{"title":"为尿液分析应用设计的先进发光金属有机框架 (MOF) 传感器","authors":"","doi":"10.1016/j.ccr.2024.216090","DOIUrl":null,"url":null,"abstract":"<div><p>Metal–organic frameworks (MOFs) have garnered attention in clinical sensing applications due to their tailored structural and electronic properties, which facilitate the development of efficient materials. Urine, as a biomedium, is one of the primary sampling sources for analyzing any disorder in the human body. In this realm, MOFs constructed from organic and inorganic materials render active platforms for urine sample analysis, enhancing the efficacy of novel devices. Herein, we study and summarize the energy transfer, structure, and optical engineering properties of MOFs for sensing platforms. Then, the study presents recent progress on MOF materials as promising candidates for urine sample analysis to detect various biomarkers and ions, among other analytes for real sample analysis, owing to their multifunctional electronic sites with optical characteristics. The discussion presents luminescent MOFs as solutions to challenges in conventional sensors, such as low stability and energy transfer issues, paving the way in sensory areas. The composite MOFs capitalize on luminescence signals and the rapid detection of biomarkers. In this review, MOF material sensor technologies are explored, focusing on strategies to improve device performance and highlighting the role of MOF materials in enhancing the functionality and efficiency of next-generation clinical devices.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced luminescent metal–organic framework (MOF) sensors engineered for urine analysis applications\",\"authors\":\"\",\"doi\":\"10.1016/j.ccr.2024.216090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal–organic frameworks (MOFs) have garnered attention in clinical sensing applications due to their tailored structural and electronic properties, which facilitate the development of efficient materials. Urine, as a biomedium, is one of the primary sampling sources for analyzing any disorder in the human body. In this realm, MOFs constructed from organic and inorganic materials render active platforms for urine sample analysis, enhancing the efficacy of novel devices. Herein, we study and summarize the energy transfer, structure, and optical engineering properties of MOFs for sensing platforms. Then, the study presents recent progress on MOF materials as promising candidates for urine sample analysis to detect various biomarkers and ions, among other analytes for real sample analysis, owing to their multifunctional electronic sites with optical characteristics. The discussion presents luminescent MOFs as solutions to challenges in conventional sensors, such as low stability and energy transfer issues, paving the way in sensory areas. The composite MOFs capitalize on luminescence signals and the rapid detection of biomarkers. In this review, MOF material sensor technologies are explored, focusing on strategies to improve device performance and highlighting the role of MOF materials in enhancing the functionality and efficiency of next-generation clinical devices.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004363\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004363","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Metal–organic frameworks (MOFs) have garnered attention in clinical sensing applications due to their tailored structural and electronic properties, which facilitate the development of efficient materials. Urine, as a biomedium, is one of the primary sampling sources for analyzing any disorder in the human body. In this realm, MOFs constructed from organic and inorganic materials render active platforms for urine sample analysis, enhancing the efficacy of novel devices. Herein, we study and summarize the energy transfer, structure, and optical engineering properties of MOFs for sensing platforms. Then, the study presents recent progress on MOF materials as promising candidates for urine sample analysis to detect various biomarkers and ions, among other analytes for real sample analysis, owing to their multifunctional electronic sites with optical characteristics. The discussion presents luminescent MOFs as solutions to challenges in conventional sensors, such as low stability and energy transfer issues, paving the way in sensory areas. The composite MOFs capitalize on luminescence signals and the rapid detection of biomarkers. In this review, MOF material sensor technologies are explored, focusing on strategies to improve device performance and highlighting the role of MOF materials in enhancing the functionality and efficiency of next-generation clinical devices.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.