胸锁乳突肌在大鼠呼吸和吞咽过程中的功能参与。

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-10-01 Epub Date: 2024-08-06 DOI:10.1152/ajpgi.00138.2024
Nobuaki Saka, Titi Chotirungsan, Midori Yoshihara, Charng-Rong Pan, Yuhei Tsutsui, Nozomi Dewa, Jin Magara, Takanori Tsujimura, Makoto Inoue
{"title":"胸锁乳突肌在大鼠呼吸和吞咽过程中的功能参与。","authors":"Nobuaki Saka, Titi Chotirungsan, Midori Yoshihara, Charng-Rong Pan, Yuhei Tsutsui, Nozomi Dewa, Jin Magara, Takanori Tsujimura, Makoto Inoue","doi":"10.1152/ajpgi.00138.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The sternohyoid muscle depresses the hyoid bone, but it is unclear whether the muscle contributes to respiratory and swallowing mechanisms. This study aimed to clarify whether the sternohyoid muscle participates in the respiration and swallowing reflex and how the activity is modulated in two conditions: with airway stenosis and with a fixed sternohyoid muscle length. Electromyographic activity in the sternohyoid, digastric, thyrohyoid, and diaphragm muscles was recorded in anesthetized rats. The sternohyoid muscle activity was observed in the inspiratory phase and during swallowing, and was well coordinated with digastric and thyrohyoid muscle activity. With airway stenosis, the respiratory activity per respiratory cycle was facilitated in all assessed muscles but the facilitation of activity per second occurred only in the digastric, thyrohyoid, and sternohyoid muscles. With airway stenosis, the swallowing activity was facilitated only in the digastric muscle but not in the thyrohyoid and sternohyoid muscles. Swallowing activity was not observed in the sternohyoid muscle in the condition with the sternohyoid muscle length fixed, although increased inspiratory activity remained. The current results suggest that <i>1</i>) the sternohyoid muscle is slightly activated in the inspiratory phase, <i>2</i>) the effect of airway stenosis on respiratory function may differ between the upper airway muscles and diaphragm, and <i>3</i>) swallowing activity in the sternohyoid muscle is not dominantly controlled by the swallowing central pattern generator but instead occurs as a myotatic reflex.<b>NEW & NOTEWORTHY</b> We found that the sternohyoid muscle was activated in the inspiratory phase. However, increased airway resistance had different effects on the extrathoracic muscles than on the diaphragm. The swallowing activity of the sternohyoid disappeared when the muscle length was fixed. These findings suggest that the sternohyoid muscle may be activated not by the swallowing central pattern generator but as a myotatic reflex.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G598-G607"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional involvement of the sternohyoid muscle during breathing and swallowing in rats.\",\"authors\":\"Nobuaki Saka, Titi Chotirungsan, Midori Yoshihara, Charng-Rong Pan, Yuhei Tsutsui, Nozomi Dewa, Jin Magara, Takanori Tsujimura, Makoto Inoue\",\"doi\":\"10.1152/ajpgi.00138.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sternohyoid muscle depresses the hyoid bone, but it is unclear whether the muscle contributes to respiratory and swallowing mechanisms. This study aimed to clarify whether the sternohyoid muscle participates in the respiration and swallowing reflex and how the activity is modulated in two conditions: with airway stenosis and with a fixed sternohyoid muscle length. Electromyographic activity in the sternohyoid, digastric, thyrohyoid, and diaphragm muscles was recorded in anesthetized rats. The sternohyoid muscle activity was observed in the inspiratory phase and during swallowing, and was well coordinated with digastric and thyrohyoid muscle activity. With airway stenosis, the respiratory activity per respiratory cycle was facilitated in all assessed muscles but the facilitation of activity per second occurred only in the digastric, thyrohyoid, and sternohyoid muscles. With airway stenosis, the swallowing activity was facilitated only in the digastric muscle but not in the thyrohyoid and sternohyoid muscles. Swallowing activity was not observed in the sternohyoid muscle in the condition with the sternohyoid muscle length fixed, although increased inspiratory activity remained. The current results suggest that <i>1</i>) the sternohyoid muscle is slightly activated in the inspiratory phase, <i>2</i>) the effect of airway stenosis on respiratory function may differ between the upper airway muscles and diaphragm, and <i>3</i>) swallowing activity in the sternohyoid muscle is not dominantly controlled by the swallowing central pattern generator but instead occurs as a myotatic reflex.<b>NEW & NOTEWORTHY</b> We found that the sternohyoid muscle was activated in the inspiratory phase. However, increased airway resistance had different effects on the extrathoracic muscles than on the diaphragm. The swallowing activity of the sternohyoid disappeared when the muscle length was fixed. These findings suggest that the sternohyoid muscle may be activated not by the swallowing central pattern generator but as a myotatic reflex.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G598-G607\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00138.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00138.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胸锁乳突肌压迫舌骨,但目前尚不清楚胸锁乳突肌是否有助于呼吸和吞咽机制。本研究旨在阐明胸锁乳突肌是否参与呼吸和吞咽反射,以及在气道狭窄和胸锁乳突肌长度固定两种情况下胸锁乳突肌的活动是如何调节的。在麻醉大鼠体内记录了胸骨舌骨肌、胃窦肌、甲状舌骨肌和膈肌的肌电活动。在吸气阶段和吞咽时可观察到胸锁乳突肌的活动,而且胸锁乳突肌与地胃肌和甲状腺肌的活动协调良好。气道狭窄时,所有接受评估的肌肉在每个呼吸周期的呼吸活动都得到了促进,但每秒活动的促进只发生在指骨肌、甲状舌骨肌和胸骨舌骨肌。气道狭窄时,吞咽活动仅在指胃肌中得到促进,而在甲状舌骨肌和胸骨舌骨肌中则没有。在胸锁乳突肌长度固定的情况下,虽然吸气活动仍然增加,但胸锁乳突肌没有观察到吞咽活动。目前的结果表明:(1) 胸锁乳突肌在吸气阶段被轻微激活;(2) 气道狭窄对呼吸功能的影响可能因上气道肌肉和膈肌的不同而不同;(3) 胸锁乳突肌的吞咽活动并非主要由吞咽中枢模式发生器控制,而是作为肌反射发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional involvement of the sternohyoid muscle during breathing and swallowing in rats.

The sternohyoid muscle depresses the hyoid bone, but it is unclear whether the muscle contributes to respiratory and swallowing mechanisms. This study aimed to clarify whether the sternohyoid muscle participates in the respiration and swallowing reflex and how the activity is modulated in two conditions: with airway stenosis and with a fixed sternohyoid muscle length. Electromyographic activity in the sternohyoid, digastric, thyrohyoid, and diaphragm muscles was recorded in anesthetized rats. The sternohyoid muscle activity was observed in the inspiratory phase and during swallowing, and was well coordinated with digastric and thyrohyoid muscle activity. With airway stenosis, the respiratory activity per respiratory cycle was facilitated in all assessed muscles but the facilitation of activity per second occurred only in the digastric, thyrohyoid, and sternohyoid muscles. With airway stenosis, the swallowing activity was facilitated only in the digastric muscle but not in the thyrohyoid and sternohyoid muscles. Swallowing activity was not observed in the sternohyoid muscle in the condition with the sternohyoid muscle length fixed, although increased inspiratory activity remained. The current results suggest that 1) the sternohyoid muscle is slightly activated in the inspiratory phase, 2) the effect of airway stenosis on respiratory function may differ between the upper airway muscles and diaphragm, and 3) swallowing activity in the sternohyoid muscle is not dominantly controlled by the swallowing central pattern generator but instead occurs as a myotatic reflex.NEW & NOTEWORTHY We found that the sternohyoid muscle was activated in the inspiratory phase. However, increased airway resistance had different effects on the extrathoracic muscles than on the diaphragm. The swallowing activity of the sternohyoid disappeared when the muscle length was fixed. These findings suggest that the sternohyoid muscle may be activated not by the swallowing central pattern generator but as a myotatic reflex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
期刊最新文献
Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach. Parenteral nutrition results in peripheral ileal to hepatic circadian discordance in mice. AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway. Formal degree programs in physiology promote careers of clinical scientists and benefit basic science departments. Hepatic bile acid accretion correlates with cholestatic liver injury and therapeutic response in Cyp2c70 knockout mice with a humanized bile acid composition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1