{"title":"体外观察组蛋白六聚体与芽殖酵母 Mcm2(复制螺旋酶的一个亚基)氨基末端区域的结合和解离。","authors":"Kohji Hizume","doi":"10.1093/bbb/zbae109","DOIUrl":null,"url":null,"abstract":"<p><p>During DNA replication, core histones that form nucleosomes on template strands are evicted and associate with newly synthesized strands to reform nucleosomes. Mcm2, a subunit of the Mcm2-7 complex, which is a core component of the replicative helicase, interacts with histones in the amino-terminal region (Mcm2N) and is involved in the parental histone recycling to lagging strands. Herein, the interaction of Mcm2N with histones was biochemically analyzed to reveal the molecular mechanisms underlying histone recycling by Mcm2N. With the addition of Mcm2N, a histone hexamer, comprising an H3-H4 tetramer and an H2A-H2B dimer, was excised from the histone octamer to form a complex with Mcm2N. The histone hexamer, but not H3-H4 tetramer was released from Mcm2N in the presence of Nap1, a histone chaperone. FACT, another histone chaperone, stabilized Mcm2N-histone hexamer complex to protect from Nap1-dependent dissociation. This study indicates cooperative histone transfer via Mcm2N and histone chaperones.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro observation of histone-hexamer association with and dissociation from the amino-terminal region of budding yeast Mcm2, a subunit of the replicative helicase.\",\"authors\":\"Kohji Hizume\",\"doi\":\"10.1093/bbb/zbae109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During DNA replication, core histones that form nucleosomes on template strands are evicted and associate with newly synthesized strands to reform nucleosomes. Mcm2, a subunit of the Mcm2-7 complex, which is a core component of the replicative helicase, interacts with histones in the amino-terminal region (Mcm2N) and is involved in the parental histone recycling to lagging strands. Herein, the interaction of Mcm2N with histones was biochemically analyzed to reveal the molecular mechanisms underlying histone recycling by Mcm2N. With the addition of Mcm2N, a histone hexamer, comprising an H3-H4 tetramer and an H2A-H2B dimer, was excised from the histone octamer to form a complex with Mcm2N. The histone hexamer, but not H3-H4 tetramer was released from Mcm2N in the presence of Nap1, a histone chaperone. FACT, another histone chaperone, stabilized Mcm2N-histone hexamer complex to protect from Nap1-dependent dissociation. This study indicates cooperative histone transfer via Mcm2N and histone chaperones.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae109\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae109","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In vitro observation of histone-hexamer association with and dissociation from the amino-terminal region of budding yeast Mcm2, a subunit of the replicative helicase.
During DNA replication, core histones that form nucleosomes on template strands are evicted and associate with newly synthesized strands to reform nucleosomes. Mcm2, a subunit of the Mcm2-7 complex, which is a core component of the replicative helicase, interacts with histones in the amino-terminal region (Mcm2N) and is involved in the parental histone recycling to lagging strands. Herein, the interaction of Mcm2N with histones was biochemically analyzed to reveal the molecular mechanisms underlying histone recycling by Mcm2N. With the addition of Mcm2N, a histone hexamer, comprising an H3-H4 tetramer and an H2A-H2B dimer, was excised from the histone octamer to form a complex with Mcm2N. The histone hexamer, but not H3-H4 tetramer was released from Mcm2N in the presence of Nap1, a histone chaperone. FACT, another histone chaperone, stabilized Mcm2N-histone hexamer complex to protect from Nap1-dependent dissociation. This study indicates cooperative histone transfer via Mcm2N and histone chaperones.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.