纳米粒子辅助织物相吸附萃取法测定工业污水中的偶氮染料。

IF 1.5 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of chromatographic science Pub Date : 2024-08-06 DOI:10.1093/chromsci/bmae046
Nayereh Rahimian, Javad Feizy, Zarrin Es'haghi
{"title":"纳米粒子辅助织物相吸附萃取法测定工业污水中的偶氮染料。","authors":"Nayereh Rahimian, Javad Feizy, Zarrin Es'haghi","doi":"10.1093/chromsci/bmae046","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol-gel and the time of contact, was investigated. In addition, experiments were performed to determine the effect of different adsorption parameters, such as sample volume, adsorption time, adsorbent value, desorption time, ionic strength and pH. It was found that the calibration curve was linear within two ranges of concentrations (0.05-0.1 and 0.5-15 ng/L for methyl red; 0.05-0.5 and 0.5-15 ng/L for sunset yellow) with correlation coefficients better than 0.9683. The limit of detection was 0.014 ng/L for methyl red and 0.015 ng/L for sunset yellow. Repeatability Relative Standard Deviation (RSD) with three replicated experiments was 1.5-10% for methyl red and 2.5-5.8% for sunset yellow. Relative recovery percentages of 88-96% for methyl red and 62-92% for sunset yellow were obtained in the samples. Moreover, the results have shown that acceptable accuracy, precision and linearity make the \"fabric phase sorptive extraction\" a proper method for the determination of dyes from industrial sewage samples.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle Assisted Fabric Phase Sorptive Extraction for Azo Dye Determination in the Industrial Sewage.\",\"authors\":\"Nayereh Rahimian, Javad Feizy, Zarrin Es'haghi\",\"doi\":\"10.1093/chromsci/bmae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol-gel and the time of contact, was investigated. In addition, experiments were performed to determine the effect of different adsorption parameters, such as sample volume, adsorption time, adsorbent value, desorption time, ionic strength and pH. It was found that the calibration curve was linear within two ranges of concentrations (0.05-0.1 and 0.5-15 ng/L for methyl red; 0.05-0.5 and 0.5-15 ng/L for sunset yellow) with correlation coefficients better than 0.9683. The limit of detection was 0.014 ng/L for methyl red and 0.015 ng/L for sunset yellow. Repeatability Relative Standard Deviation (RSD) with three replicated experiments was 1.5-10% for methyl red and 2.5-5.8% for sunset yellow. Relative recovery percentages of 88-96% for methyl red and 62-92% for sunset yellow were obtained in the samples. Moreover, the results have shown that acceptable accuracy, precision and linearity make the \\\"fabric phase sorptive extraction\\\" a proper method for the determination of dyes from industrial sewage samples.</p>\",\"PeriodicalId\":15430,\"journal\":{\"name\":\"Journal of chromatographic science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chromatographic science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmae046\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae046","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

目前,水源中存在的偶氮染料是重要的环境问题之一。本研究首次采用纳米颗粒辅助织物相吸附萃取(NFPSE)和高效液相色谱法进行快速灵敏的样品制备,以去除水溶液中的甲基红和日落黄等偶氮染料。主要研究了影响 NFPSE 的几个参数的重要性,如织物类型、吸附剂种类、与溶胶-凝胶接触的次数和接触时间。此外,实验还确定了不同吸附参数的影响,如样品量、吸附时间、吸附剂值、解吸时间、离子强度和 pH 值。结果发现,校准曲线在两个浓度范围(甲基红为 0.05-0.1 和 0.5-15 纳克/升;日落黄为 0.05-0.5 和 0.5-15 纳克/升)内呈线性关系,相关系数优于 0.9683。甲基红的检测限为 0.014 纳克/升,日落黄的检测限为 0.015 纳克/升。三次重复实验的重复性相对标准偏差(RSD)为:甲基红 1.5-10%,日落黄 2.5-5.8%。样品中甲基红和日落黄的相对回收率分别为 88%-96%和 62%-92%。此外,实验结果表明,"织物相吸附萃取法 "具有可接受的准确度、精确度和线性度,是测定工业污水样品中染料含量的理想方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoparticle Assisted Fabric Phase Sorptive Extraction for Azo Dye Determination in the Industrial Sewage.

Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol-gel and the time of contact, was investigated. In addition, experiments were performed to determine the effect of different adsorption parameters, such as sample volume, adsorption time, adsorbent value, desorption time, ionic strength and pH. It was found that the calibration curve was linear within two ranges of concentrations (0.05-0.1 and 0.5-15 ng/L for methyl red; 0.05-0.5 and 0.5-15 ng/L for sunset yellow) with correlation coefficients better than 0.9683. The limit of detection was 0.014 ng/L for methyl red and 0.015 ng/L for sunset yellow. Repeatability Relative Standard Deviation (RSD) with three replicated experiments was 1.5-10% for methyl red and 2.5-5.8% for sunset yellow. Relative recovery percentages of 88-96% for methyl red and 62-92% for sunset yellow were obtained in the samples. Moreover, the results have shown that acceptable accuracy, precision and linearity make the "fabric phase sorptive extraction" a proper method for the determination of dyes from industrial sewage samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
7.70%
发文量
94
审稿时长
5.6 months
期刊介绍: The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.
期刊最新文献
A GC–MS Method for Determination of β-Propiolactone Residues in Inactivated Covid-19 Vaccines Ayurveda Detoxification Process Reduces Plumbagin from the Roots of Plumbago zeylanica L. - A RP-UFLC Analysis. Green and Sustainable Analytical Chemistry-Driven Chromatographic Method Development for Stability Study of Apixaban Using Box-Behnken Design and Principal Component Analysis. A Sensitive Liquid Chromatography-Mass Spectrometric Method for Determination of Bisoprolol in Rat Serum after Pre-Column Derivatization. Design of Experiment-Based Green UPLC-DAD Method for the Simultaneous Determination of Indacaterol, Glycopyrronium and Mometasone in their Combined Dosage Form and Spiked Human Plasma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1