对体内细胞活动历史进行快速生化标记。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-08-05 DOI:10.1038/s41592-024-02375-7
Run Zhang, Maribel Anguiano, Isak K. Aarrestad, Sophia Lin, Joshua Chandra, Sruti S. Vadde, David E. Olson, Christina K. Kim
{"title":"对体内细胞活动历史进行快速生化标记。","authors":"Run Zhang, Maribel Anguiano, Isak K. Aarrestad, Sophia Lin, Joshua Chandra, Sruti S. Vadde, David E. Olson, Christina K. Kim","doi":"10.1038/s41592-024-02375-7","DOIUrl":null,"url":null,"abstract":"Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice. CaST is a Ca2+-activated version of split-TurboID. The tool allows labeling active neurons quickly, simply by administration of exogenous biotin, thus enabling the study of behaviors that would be impaired by hardware required for the use of other, light-dependent tools.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02375-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid, biochemical tagging of cellular activity history in vivo\",\"authors\":\"Run Zhang, Maribel Anguiano, Isak K. Aarrestad, Sophia Lin, Joshua Chandra, Sruti S. Vadde, David E. Olson, Christina K. Kim\",\"doi\":\"10.1038/s41592-024-02375-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice. CaST is a Ca2+-activated version of split-TurboID. The tool allows labeling active neurons quickly, simply by administration of exogenous biotin, thus enabling the study of behaviors that would be impaired by hardware required for the use of other, light-dependent tools.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41592-024-02375-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02375-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02375-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞内钙(Ca2+)在整个生物学的细胞信号传导中无处不在。虽然现有的荧光传感器和报告器可以检测 Ca2+ 水平升高的活化细胞,但这些方法需要植入物将光传递到深层组织,因此无法在自由活动的动物中进行非侵入性使用。在这里,我们设计了一种酶催化方法,可在体内快速对 Ca2+ 升高的细胞进行生化标记。Ca2+ 激活的分裂-TurboID(CaST)能在 10 分钟内用外源性生物素分子标记激活的细胞。酶信号随 Ca2+ 浓度和生物素标记时间的增加而增加,这表明 CaST 是总 Ca2+ 活性的时间门控积分器。此外,与需要数小时才能产生信号的转录报告器相比,CaST 可以在活性标记后立即读出信号。这些功能使我们能够应用 CaST 标记被迷幻剂激活的前额叶皮层神经元,并将 CaST 信号与迷幻剂诱导的无系小鼠头部抽动反应相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid, biochemical tagging of cellular activity history in vivo
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice. CaST is a Ca2+-activated version of split-TurboID. The tool allows labeling active neurons quickly, simply by administration of exogenous biotin, thus enabling the study of behaviors that would be impaired by hardware required for the use of other, light-dependent tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Pushing the limits of MRI brain imaging A leap for mesoscale imaging Multi-pass nanopore for single-molecule protein sequencing The bearded dragon Pogona vitticeps Microscopic art
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1