{"title":"胶质母细胞瘤中N-myc下游调控基因1蛋白的高表达反映了肿瘤血管生成和患者预后不良。","authors":"Yasuo Sugita, Takuya Furuta, Kenji Takahashi, Koichi Higaki, Yuichi Murakami, Michihiko Kuwano, Mayumi Ono, Hideyuki Abe, Jun Akiba, Motohiro Morioka","doi":"10.1111/neup.12999","DOIUrl":null,"url":null,"abstract":"<p><p>N-myc downstream regulated gene 1 (NDRG1) is a member of the NDRG family, of which four members (NDRG1, NDRG2, NDRG3, and NDRG4) have been identified. NDRG1 is repressed by c-MYC and N-MYC proto-oncogenes. NDRG1 is translated into a 43 kDa protein that is associated with the regulation of cellular stress responses, proliferation, and differentiation. In this study, we aimed to clarify the relationship between progression of glioblastoma (GB) IDH-wildtype and NDRG1 expression in tumor cells. We assessed the expression of NDRG1 in 41 GBs using immunostaining and evaluated its prognostic significance. NDRG1 expression by GBs was evaluated using Histoscore, which showed high and low scores in 23 and 18 cases, respectively. NDRG1-positive cells were strongly expressed in Ki-67 labeled proliferating tumor cells and CD105 positive proliferating microvessels around the area of palisading necrosis. Statistical analyses showed lower survival rates in the high-score group than the low-score group (P < 0.01). This study indicated that overexpression of NDRG1 by GB reflects tumor angiogenesis and poor patient prognosis.</p>","PeriodicalId":19204,"journal":{"name":"Neuropathology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated expression of N-myc downstream regulated gene 1 protein in glioblastomas reflects tumor angiogenesis and poor patient prognosis.\",\"authors\":\"Yasuo Sugita, Takuya Furuta, Kenji Takahashi, Koichi Higaki, Yuichi Murakami, Michihiko Kuwano, Mayumi Ono, Hideyuki Abe, Jun Akiba, Motohiro Morioka\",\"doi\":\"10.1111/neup.12999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-myc downstream regulated gene 1 (NDRG1) is a member of the NDRG family, of which four members (NDRG1, NDRG2, NDRG3, and NDRG4) have been identified. NDRG1 is repressed by c-MYC and N-MYC proto-oncogenes. NDRG1 is translated into a 43 kDa protein that is associated with the regulation of cellular stress responses, proliferation, and differentiation. In this study, we aimed to clarify the relationship between progression of glioblastoma (GB) IDH-wildtype and NDRG1 expression in tumor cells. We assessed the expression of NDRG1 in 41 GBs using immunostaining and evaluated its prognostic significance. NDRG1 expression by GBs was evaluated using Histoscore, which showed high and low scores in 23 and 18 cases, respectively. NDRG1-positive cells were strongly expressed in Ki-67 labeled proliferating tumor cells and CD105 positive proliferating microvessels around the area of palisading necrosis. Statistical analyses showed lower survival rates in the high-score group than the low-score group (P < 0.01). This study indicated that overexpression of NDRG1 by GB reflects tumor angiogenesis and poor patient prognosis.</p>\",\"PeriodicalId\":19204,\"journal\":{\"name\":\"Neuropathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/neup.12999\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/neup.12999","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Elevated expression of N-myc downstream regulated gene 1 protein in glioblastomas reflects tumor angiogenesis and poor patient prognosis.
N-myc downstream regulated gene 1 (NDRG1) is a member of the NDRG family, of which four members (NDRG1, NDRG2, NDRG3, and NDRG4) have been identified. NDRG1 is repressed by c-MYC and N-MYC proto-oncogenes. NDRG1 is translated into a 43 kDa protein that is associated with the regulation of cellular stress responses, proliferation, and differentiation. In this study, we aimed to clarify the relationship between progression of glioblastoma (GB) IDH-wildtype and NDRG1 expression in tumor cells. We assessed the expression of NDRG1 in 41 GBs using immunostaining and evaluated its prognostic significance. NDRG1 expression by GBs was evaluated using Histoscore, which showed high and low scores in 23 and 18 cases, respectively. NDRG1-positive cells were strongly expressed in Ki-67 labeled proliferating tumor cells and CD105 positive proliferating microvessels around the area of palisading necrosis. Statistical analyses showed lower survival rates in the high-score group than the low-score group (P < 0.01). This study indicated that overexpression of NDRG1 by GB reflects tumor angiogenesis and poor patient prognosis.
期刊介绍:
Neuropathology is an international journal sponsored by the Japanese Society of Neuropathology and publishes peer-reviewed original papers dealing with all aspects of human and experimental neuropathology and related fields of research. The Journal aims to promote the international exchange of results and encourages authors from all countries to submit papers in the following categories: Original Articles, Case Reports, Short Communications, Occasional Reviews, Editorials and Letters to the Editor. All articles are peer-reviewed by at least two researchers expert in the field of the submitted paper.