随着时间的推移,气候变暖对植物物候的影响逐渐减弱。

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences New Phytologist Pub Date : 2024-08-05 DOI:10.1111/nph.20019
Chunyan Lu, Kees Jan van Groenigen, Mark A K Gillespie, Robert D Hollister, Eric Post, Elisabeth J Cooper, Jeffrey M Welker, Yixuan Huang, Xueting Min, Jianghui Chen, Ingibjörg Svala Jónsdóttir, Marguerite Mauritz, Nicoletta Cannone, Susan M Natali, Edward Schuur, Ulf Molau, Tao Yan, Hao Wang, Jin-Sheng He, Huiying Liu
{"title":"随着时间的推移,气候变暖对植物物候的影响逐渐减弱。","authors":"Chunyan Lu, Kees Jan van Groenigen, Mark A K Gillespie, Robert D Hollister, Eric Post, Elisabeth J Cooper, Jeffrey M Welker, Yixuan Huang, Xueting Min, Jianghui Chen, Ingibjörg Svala Jónsdóttir, Marguerite Mauritz, Nicoletta Cannone, Susan M Natali, Edward Schuur, Ulf Molau, Tao Yan, Hao Wang, Jin-Sheng He, Huiying Liu","doi":"10.1111/nph.20019","DOIUrl":null,"url":null,"abstract":"<p><p>Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diminishing warming effects on plant phenology over time.\",\"authors\":\"Chunyan Lu, Kees Jan van Groenigen, Mark A K Gillespie, Robert D Hollister, Eric Post, Elisabeth J Cooper, Jeffrey M Welker, Yixuan Huang, Xueting Min, Jianghui Chen, Ingibjörg Svala Jónsdóttir, Marguerite Mauritz, Nicoletta Cannone, Susan M Natali, Edward Schuur, Ulf Molau, Tao Yan, Hao Wang, Jin-Sheng He, Huiying Liu\",\"doi\":\"10.1111/nph.20019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

植物物候学是经常性生物事件发生的时间,它对气候变暖做出了关键而复杂的反应,对生态系统功能和服务产生了影响。预测未来气候下植物物候的一个关键挑战是确定物候变化是否会随着更密集、更长期的气候变暖而持续。在此,我们对全球 103 项气候变暖实验研究进行了荟萃分析,研究了植物出叶、初花、末花和叶片着色这四个物候期的反应。我们的研究表明,在草本和木本植物中,气候变暖会加快出叶和开花,但会推迟叶片着色。随着升温幅度的增加,草本植物大多数植物物候期的反应逐渐趋于平缓,而木本植物的物候反应则与升温幅度成正比。我们还发现,在所有物候期中,气候变暖对植物物候的实验效应都会随着时间的推移而减弱。具体来说,草本植物的初花变化率以及木本植物的落叶和叶色变化率随着实验时间的延长而降低。总之,这些结果表明,随着气温的不断升高,全球变暖对植物物候的实际影响将逐渐减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diminishing warming effects on plant phenology over time.

Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
期刊最新文献
Marine macrophytes in a changing world: mechanisms underpinning responses and resilience to environmental stress - an introduction to a Virtual Issue. The phosphate starvation response regulator PHR2 antagonizes arbuscule maintenance in Medicago. Arabidopsis enters the single-cell proteomics era. Theory and tests for coordination among hydraulic and photosynthetic traits in co-occurring woody species. Transport of water to leaves implies whole-plant coordination of hydraulic and photosynthetic traits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1