SegMorph:心脏磁共振成像序列的并发运动估计和分割。

Ning Bi, Arezoo Zakeri, Yan Xia, Nina Cheng, Zeike A Taylor, Alejandro F Frangi, Ali Gooya
{"title":"SegMorph:心脏磁共振成像序列的并发运动估计和分割。","authors":"Ning Bi, Arezoo Zakeri, Yan Xia, Nina Cheng, Zeike A Taylor, Alejandro F Frangi, Ali Gooya","doi":"10.1109/TMI.2024.3435000","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel recurrent variational network, SegMorph, to perform concurrent segmentation and motion estimation on cardiac cine magnetic resonance image (CMR) sequences. Our model establishes a recurrent latent space that captures spatiotemporal features from cine-MRI sequences for multitask inference and synthesis. The proposed model follows a recurrent variational auto-encoder framework and adopts a learnt prior from the temporal inputs. We utilise a multi-branch decoder to handle bi-ventricular segmentation and motion estimation simultaneously. In addition to the spatiotemporal features from the latent space, motion estimation enriches the supervision of sequential segmentation tasks by providing pseudo-ground truth. On the other hand, the segmentation branch helps with motion estimation by predicting deformation vector fields (DVFs) based on anatomical information. Experimental results demonstrate that the proposed method performs better than state-of-the-art approaches qualitatively and quantitatively for both segmentation and motion estimation tasks. We achieved an 81% average Dice Similarity Coefficient (DSC) and a less than 3.5 mm average Hausdorff distance on segmentation. Meanwhile, we achieved a motion estimation Dice Similarity Coefficient of over 79%, with approximately 0.14% of pixels displaying a negative Jacobian determinant in the estimated DVFs.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SegMorph: Concurrent Motion Estimation and Segmentation for Cardiac MRI Sequences.\",\"authors\":\"Ning Bi, Arezoo Zakeri, Yan Xia, Nina Cheng, Zeike A Taylor, Alejandro F Frangi, Ali Gooya\",\"doi\":\"10.1109/TMI.2024.3435000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel recurrent variational network, SegMorph, to perform concurrent segmentation and motion estimation on cardiac cine magnetic resonance image (CMR) sequences. Our model establishes a recurrent latent space that captures spatiotemporal features from cine-MRI sequences for multitask inference and synthesis. The proposed model follows a recurrent variational auto-encoder framework and adopts a learnt prior from the temporal inputs. We utilise a multi-branch decoder to handle bi-ventricular segmentation and motion estimation simultaneously. In addition to the spatiotemporal features from the latent space, motion estimation enriches the supervision of sequential segmentation tasks by providing pseudo-ground truth. On the other hand, the segmentation branch helps with motion estimation by predicting deformation vector fields (DVFs) based on anatomical information. Experimental results demonstrate that the proposed method performs better than state-of-the-art approaches qualitatively and quantitatively for both segmentation and motion estimation tasks. We achieved an 81% average Dice Similarity Coefficient (DSC) and a less than 3.5 mm average Hausdorff distance on segmentation. Meanwhile, we achieved a motion estimation Dice Similarity Coefficient of over 79%, with approximately 0.14% of pixels displaying a negative Jacobian determinant in the estimated DVFs.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3435000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3435000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的递归变异网络 SegMorph,用于同时对心脏电影磁共振图像(CMR)序列进行分割和运动估计。我们的模型建立了一个递归潜空间,可捕捉电影磁共振成像序列的时空特征,用于多任务推理和合成。所提议的模型遵循递归变异自动编码器框架,并采用从时间输入中学习的先验。我们利用多分支解码器同时处理双心室分割和运动估计。除了来自潜在空间的时空特征外,运动估计通过提供伪地面真实来丰富对顺序分割任务的监督。另一方面,分割分支根据解剖信息预测变形矢量场(DVF),从而帮助进行运动估计。实验结果表明,在分割和运动估计任务方面,所提出的方法在质量和数量上都优于最先进的方法。在分割方面,我们取得了 81% 的平均骰子相似系数(DSC)和小于 3.5 mm 的平均豪斯多夫距离。同时,我们的运动估计骰子相似系数超过了 79%,约 0.14% 的像素在估计的 DVF 中显示负雅各布行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SegMorph: Concurrent Motion Estimation and Segmentation for Cardiac MRI Sequences.

We propose a novel recurrent variational network, SegMorph, to perform concurrent segmentation and motion estimation on cardiac cine magnetic resonance image (CMR) sequences. Our model establishes a recurrent latent space that captures spatiotemporal features from cine-MRI sequences for multitask inference and synthesis. The proposed model follows a recurrent variational auto-encoder framework and adopts a learnt prior from the temporal inputs. We utilise a multi-branch decoder to handle bi-ventricular segmentation and motion estimation simultaneously. In addition to the spatiotemporal features from the latent space, motion estimation enriches the supervision of sequential segmentation tasks by providing pseudo-ground truth. On the other hand, the segmentation branch helps with motion estimation by predicting deformation vector fields (DVFs) based on anatomical information. Experimental results demonstrate that the proposed method performs better than state-of-the-art approaches qualitatively and quantitatively for both segmentation and motion estimation tasks. We achieved an 81% average Dice Similarity Coefficient (DSC) and a less than 3.5 mm average Hausdorff distance on segmentation. Meanwhile, we achieved a motion estimation Dice Similarity Coefficient of over 79%, with approximately 0.14% of pixels displaying a negative Jacobian determinant in the estimated DVFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1