Alexandre Normandeau, Jordan B. R. Eamer, Robert G. Way, Emma J. Harrison, Frédéric Cyr, Christopher K. Algar, Jennifer L. Eamer, Haley D. Geizer, Jessica Haddock, Barret L. Kurylyk, Nicolas Van Nieuwenhove, Liz Pijogge, Geneviève Philibert, Katleen Robert, Michelle Saunders, Joseph Tamborski, Audrey Limoges
{"title":"加拿大亚北极地区海底永久冻土与海底地下水排放有关的证据","authors":"Alexandre Normandeau, Jordan B. R. Eamer, Robert G. Way, Emma J. Harrison, Frédéric Cyr, Christopher K. Algar, Jennifer L. Eamer, Haley D. Geizer, Jessica Haddock, Barret L. Kurylyk, Nicolas Van Nieuwenhove, Liz Pijogge, Geneviève Philibert, Katleen Robert, Michelle Saunders, Joseph Tamborski, Audrey Limoges","doi":"10.1038/s41561-024-01497-z","DOIUrl":null,"url":null,"abstract":"The distribution and state of subsea permafrost is largely unknown. Present maps, which rely heavily on model results, suggest that subsea permafrost is confined to the Beaufort, Siberian and Laptev seas. Here we show that discontinuous subsea permafrost exists along the Labrador coast (56 °N) under the influence of the Labrador Coastal Current. High-resolution bathymetric data reveal the presence of subsea thermokarst environments on the coastal seabed of Nain, Nunatsiavut, where an ice-rich sediment sample was recovered in July 2022 at a water depth of 27 m. Porewater analysis indicates that ground ice can persist in the sediments due to freshened submarine groundwater seepage that freezes at higher temperatures (0 °C) than seawater (−1.8 °C). The formation and preservation of subsea permafrost landforms is due to cold waters of the Labrador Coastal Current entering the coastal areas and remaining less than 0 °C for most of the year. Therefore, evidence of subsea permafrost landforms in coastal Labrador and the distribution of cold bottom water in the Northern Hemisphere suggests that subsea permafrost is likely to be preserved elsewhere in subarctic regions, especially where freshened submarine groundwater seepage elevates the freezing temperature. This highlights the potential underestimation of subsea permafrost in the world’s coastal oceans. Observations from the Labrador Coast indicate the presence of subsea permafrost landforms outside of the Arctic, suggesting a potential underestimation of subsea permafrost in the world’s oceans.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 10","pages":"1022-1030"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for subsea permafrost in subarctic Canada linked to submarine groundwater discharge\",\"authors\":\"Alexandre Normandeau, Jordan B. R. Eamer, Robert G. Way, Emma J. Harrison, Frédéric Cyr, Christopher K. Algar, Jennifer L. Eamer, Haley D. Geizer, Jessica Haddock, Barret L. Kurylyk, Nicolas Van Nieuwenhove, Liz Pijogge, Geneviève Philibert, Katleen Robert, Michelle Saunders, Joseph Tamborski, Audrey Limoges\",\"doi\":\"10.1038/s41561-024-01497-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution and state of subsea permafrost is largely unknown. Present maps, which rely heavily on model results, suggest that subsea permafrost is confined to the Beaufort, Siberian and Laptev seas. Here we show that discontinuous subsea permafrost exists along the Labrador coast (56 °N) under the influence of the Labrador Coastal Current. High-resolution bathymetric data reveal the presence of subsea thermokarst environments on the coastal seabed of Nain, Nunatsiavut, where an ice-rich sediment sample was recovered in July 2022 at a water depth of 27 m. Porewater analysis indicates that ground ice can persist in the sediments due to freshened submarine groundwater seepage that freezes at higher temperatures (0 °C) than seawater (−1.8 °C). The formation and preservation of subsea permafrost landforms is due to cold waters of the Labrador Coastal Current entering the coastal areas and remaining less than 0 °C for most of the year. Therefore, evidence of subsea permafrost landforms in coastal Labrador and the distribution of cold bottom water in the Northern Hemisphere suggests that subsea permafrost is likely to be preserved elsewhere in subarctic regions, especially where freshened submarine groundwater seepage elevates the freezing temperature. This highlights the potential underestimation of subsea permafrost in the world’s coastal oceans. Observations from the Labrador Coast indicate the presence of subsea permafrost landforms outside of the Arctic, suggesting a potential underestimation of subsea permafrost in the world’s oceans.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 10\",\"pages\":\"1022-1030\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01497-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01497-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evidence for subsea permafrost in subarctic Canada linked to submarine groundwater discharge
The distribution and state of subsea permafrost is largely unknown. Present maps, which rely heavily on model results, suggest that subsea permafrost is confined to the Beaufort, Siberian and Laptev seas. Here we show that discontinuous subsea permafrost exists along the Labrador coast (56 °N) under the influence of the Labrador Coastal Current. High-resolution bathymetric data reveal the presence of subsea thermokarst environments on the coastal seabed of Nain, Nunatsiavut, where an ice-rich sediment sample was recovered in July 2022 at a water depth of 27 m. Porewater analysis indicates that ground ice can persist in the sediments due to freshened submarine groundwater seepage that freezes at higher temperatures (0 °C) than seawater (−1.8 °C). The formation and preservation of subsea permafrost landforms is due to cold waters of the Labrador Coastal Current entering the coastal areas and remaining less than 0 °C for most of the year. Therefore, evidence of subsea permafrost landforms in coastal Labrador and the distribution of cold bottom water in the Northern Hemisphere suggests that subsea permafrost is likely to be preserved elsewhere in subarctic regions, especially where freshened submarine groundwater seepage elevates the freezing temperature. This highlights the potential underestimation of subsea permafrost in the world’s coastal oceans. Observations from the Labrador Coast indicate the presence of subsea permafrost landforms outside of the Arctic, suggesting a potential underestimation of subsea permafrost in the world’s oceans.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.