Yiying Bian, Qiushuo Jin, Jinrui He, Thien Ngo, Ok-Nam Bae, Liguo Xing, Jingbo Pi, Han Young Chung, Yuanyuan Xu
{"title":"TiO2NPs 的生物医学应用可通过触发促凝血活性、激活和聚集血小板而导致动脉血栓风险。","authors":"Yiying Bian, Qiushuo Jin, Jinrui He, Thien Ngo, Ok-Nam Bae, Liguo Xing, Jingbo Pi, Han Young Chung, Yuanyuan Xu","doi":"10.1007/s10565-024-09908-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular.</p><p><strong>Methods: </strong>Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO<sub>2</sub>NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively.</p><p><strong>Results: </strong>Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO<sub>2</sub>NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO<sub>2</sub>NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO<sub>2</sub>NP treatment, which were crucial in TiO<sub>2</sub>NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO<sub>2</sub>NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT.</p><p><strong>Conclusions: </strong>Together, our study provides evidence for an ignored health risk caused by TiO<sub>2</sub>NPs, specifically TiO<sub>2</sub>NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"67"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomedical application of TiO<sub>2</sub>NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets.\",\"authors\":\"Yiying Bian, Qiushuo Jin, Jinrui He, Thien Ngo, Ok-Nam Bae, Liguo Xing, Jingbo Pi, Han Young Chung, Yuanyuan Xu\",\"doi\":\"10.1007/s10565-024-09908-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular.</p><p><strong>Methods: </strong>Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO<sub>2</sub>NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively.</p><p><strong>Results: </strong>Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO<sub>2</sub>NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO<sub>2</sub>NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO<sub>2</sub>NP treatment, which were crucial in TiO<sub>2</sub>NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO<sub>2</sub>NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT.</p><p><strong>Conclusions: </strong>Together, our study provides evidence for an ignored health risk caused by TiO<sub>2</sub>NPs, specifically TiO<sub>2</sub>NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"67\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09908-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09908-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Biomedical application of TiO2NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets.
Background: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular.
Methods: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively.
Results: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT.
Conclusions: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.