Chaobang Ma, Caili Gou, Shiyu Sun, Junmin Wang, Xin Wei, Fei Xing, Na Xing, Jingjing Yuan, Zhongyu Wang
{"title":"揭示分子复杂性:新型创伤性脑损伤继发性损伤机制中的 Wtap/Ythdf1 和 Lcn2。","authors":"Chaobang Ma, Caili Gou, Shiyu Sun, Junmin Wang, Xin Wei, Fei Xing, Na Xing, Jingjing Yuan, Zhongyu Wang","doi":"10.1007/s10565-024-09909-x","DOIUrl":null,"url":null,"abstract":"<p><p>The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"65"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306654/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the molecular complexity: Wtap/Ythdf1 and Lcn2 in novel traumatic brain injury secondary injury mechanisms.\",\"authors\":\"Chaobang Ma, Caili Gou, Shiyu Sun, Junmin Wang, Xin Wei, Fei Xing, Na Xing, Jingjing Yuan, Zhongyu Wang\",\"doi\":\"10.1007/s10565-024-09909-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"65\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306654/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09909-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09909-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unraveling the molecular complexity: Wtap/Ythdf1 and Lcn2 in novel traumatic brain injury secondary injury mechanisms.
The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.