{"title":"用于溶酶体靶向和诊断治疗整合的 Palbociclib 衍生多功能分子。","authors":"Haili Yang, Xiaoyang Zhang, Letian Xu, Yuting Zhou, Rui Ma, Hao Chen, Siqin Zhao, Munkhtsetseg Baatar, Lvyi Chen, Xukun Deng, Hongwei Gu, Xiaoming Wang","doi":"10.1080/17568919.2024.2347072","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Lysosomal pH changes are associated with drug resistance, cell growth and invasion of tumors, but effective and specific real-time monitoring of lysosomal pH compounds for cancer therapy is lacking. <b>Materials & methods:</b> Here, based on the covalent linkage of the anticancer drug palbociclib and fluorescent dye fluorescein isothiocyanate (FITC), we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. <b>Results & discussion:</b> Pal-FITC fluoresces is 20-fold stronger than that of FITC and shows a linear response in the pH range of 4.0-8.2 (R<sup>2</sup> = 0.9901). Pal-FITC blocks cells in G1 phase via <i>Cyclin D-CDK4/6-Rb</i>. <b>Conclusion:</b> Our study provides new strategies for tumor-targeted imaging and personalized therapy.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"16 13","pages":"1287-1298"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Palbociclib-derived multifunctional molecules for lysosomal targeting and diagnostic-therapeutic integration.\",\"authors\":\"Haili Yang, Xiaoyang Zhang, Letian Xu, Yuting Zhou, Rui Ma, Hao Chen, Siqin Zhao, Munkhtsetseg Baatar, Lvyi Chen, Xukun Deng, Hongwei Gu, Xiaoming Wang\",\"doi\":\"10.1080/17568919.2024.2347072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Lysosomal pH changes are associated with drug resistance, cell growth and invasion of tumors, but effective and specific real-time monitoring of lysosomal pH compounds for cancer therapy is lacking. <b>Materials & methods:</b> Here, based on the covalent linkage of the anticancer drug palbociclib and fluorescent dye fluorescein isothiocyanate (FITC), we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. <b>Results & discussion:</b> Pal-FITC fluoresces is 20-fold stronger than that of FITC and shows a linear response in the pH range of 4.0-8.2 (R<sup>2</sup> = 0.9901). Pal-FITC blocks cells in G1 phase via <i>Cyclin D-CDK4/6-Rb</i>. <b>Conclusion:</b> Our study provides new strategies for tumor-targeted imaging and personalized therapy.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\"16 13\",\"pages\":\"1287-1298\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2347072\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2347072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Palbociclib-derived multifunctional molecules for lysosomal targeting and diagnostic-therapeutic integration.
Aim: Lysosomal pH changes are associated with drug resistance, cell growth and invasion of tumors, but effective and specific real-time monitoring of lysosomal pH compounds for cancer therapy is lacking. Materials & methods: Here, based on the covalent linkage of the anticancer drug palbociclib and fluorescent dye fluorescein isothiocyanate (FITC), we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. Results & discussion: Pal-FITC fluoresces is 20-fold stronger than that of FITC and shows a linear response in the pH range of 4.0-8.2 (R2 = 0.9901). Pal-FITC blocks cells in G1 phase via Cyclin D-CDK4/6-Rb. Conclusion: Our study provides new strategies for tumor-targeted imaging and personalized therapy.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.