Thijs C. J. Verheul, Nynke Gillemans, Kerstin Putzker, Rezin Majied, Tingyue Li, Memnia Vasiliou, Bert Eussen, Annelies de Klein, Wilfred F. J. van IJcken, Emile van den Akker, Marieke von Lindern, Joe Lewis, Ulrike Uhrig, Yukio Nakamura, Thamar van Dijk, Sjaak Philipsen
{"title":"用于评估内源性胎儿血红蛋白诱导和筛选治疗化合物的细胞报告系统。","authors":"Thijs C. J. Verheul, Nynke Gillemans, Kerstin Putzker, Rezin Majied, Tingyue Li, Memnia Vasiliou, Bert Eussen, Annelies de Klein, Wilfred F. J. van IJcken, Emile van den Akker, Marieke von Lindern, Joe Lewis, Ulrike Uhrig, Yukio Nakamura, Thamar van Dijk, Sjaak Philipsen","doi":"10.1002/hem3.139","DOIUrl":null,"url":null,"abstract":"<p>Reactivation of fetal hemoglobin expression alleviates the symptoms associated with β-globinopathies, severe hereditary diseases with significant global health implications due to their high morbidity and mortality rates. The symptoms emerge following the postnatal transition from fetal-to-adult hemoglobin expression. Extensive research has focused on inducing the expression of the fetal γ-globin subunit to reverse this switch and ameliorate these symptoms. Despite decades of research, only one compound, hydroxyurea, found its way to the clinic as an inducer of fetal hemoglobin. Unfortunately, its efficacy varies among patients, highlighting the need for more effective treatments. Erythroid cell lines have been instrumental in the pursuit of both pharmacological and genetic ways to reverse the postnatal hemoglobin switch. Here, we describe the first endogenously tagged fetal hemoglobin reporter cell line based on the adult erythroid progenitor cell line HUDEP2. Utilizing CRISPR-Cas9-mediated knock-in, a bioluminescent tag was integrated at the <i>HBG1</i> gene. Subsequent extensive characterization confirmed that the resulting reporter cell line closely mirrors the HUDEP2 characteristics and that the cells report fetal hemoglobin induction with high sensitivity and specificity. This novel reporter cell line is therefore highly suitable for evaluating genetic and pharmacologic strategies to induce fetal hemoglobin. Furthermore, it provides an assay compatible with high-throughput drug screening, exemplified by the identification of a cluster of known fetal hemoglobin inducers in a pilot study. This new tool is made available to the research community, with the aspiration that it will accelerate the search for safer and more effective strategies to reverse the hemoglobin switch.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302795/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cellular reporter system to evaluate endogenous fetal hemoglobin induction and screen for therapeutic compounds\",\"authors\":\"Thijs C. J. Verheul, Nynke Gillemans, Kerstin Putzker, Rezin Majied, Tingyue Li, Memnia Vasiliou, Bert Eussen, Annelies de Klein, Wilfred F. J. van IJcken, Emile van den Akker, Marieke von Lindern, Joe Lewis, Ulrike Uhrig, Yukio Nakamura, Thamar van Dijk, Sjaak Philipsen\",\"doi\":\"10.1002/hem3.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reactivation of fetal hemoglobin expression alleviates the symptoms associated with β-globinopathies, severe hereditary diseases with significant global health implications due to their high morbidity and mortality rates. The symptoms emerge following the postnatal transition from fetal-to-adult hemoglobin expression. Extensive research has focused on inducing the expression of the fetal γ-globin subunit to reverse this switch and ameliorate these symptoms. Despite decades of research, only one compound, hydroxyurea, found its way to the clinic as an inducer of fetal hemoglobin. Unfortunately, its efficacy varies among patients, highlighting the need for more effective treatments. Erythroid cell lines have been instrumental in the pursuit of both pharmacological and genetic ways to reverse the postnatal hemoglobin switch. Here, we describe the first endogenously tagged fetal hemoglobin reporter cell line based on the adult erythroid progenitor cell line HUDEP2. Utilizing CRISPR-Cas9-mediated knock-in, a bioluminescent tag was integrated at the <i>HBG1</i> gene. Subsequent extensive characterization confirmed that the resulting reporter cell line closely mirrors the HUDEP2 characteristics and that the cells report fetal hemoglobin induction with high sensitivity and specificity. This novel reporter cell line is therefore highly suitable for evaluating genetic and pharmacologic strategies to induce fetal hemoglobin. Furthermore, it provides an assay compatible with high-throughput drug screening, exemplified by the identification of a cluster of known fetal hemoglobin inducers in a pilot study. This new tool is made available to the research community, with the aspiration that it will accelerate the search for safer and more effective strategies to reverse the hemoglobin switch.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.139\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
A cellular reporter system to evaluate endogenous fetal hemoglobin induction and screen for therapeutic compounds
Reactivation of fetal hemoglobin expression alleviates the symptoms associated with β-globinopathies, severe hereditary diseases with significant global health implications due to their high morbidity and mortality rates. The symptoms emerge following the postnatal transition from fetal-to-adult hemoglobin expression. Extensive research has focused on inducing the expression of the fetal γ-globin subunit to reverse this switch and ameliorate these symptoms. Despite decades of research, only one compound, hydroxyurea, found its way to the clinic as an inducer of fetal hemoglobin. Unfortunately, its efficacy varies among patients, highlighting the need for more effective treatments. Erythroid cell lines have been instrumental in the pursuit of both pharmacological and genetic ways to reverse the postnatal hemoglobin switch. Here, we describe the first endogenously tagged fetal hemoglobin reporter cell line based on the adult erythroid progenitor cell line HUDEP2. Utilizing CRISPR-Cas9-mediated knock-in, a bioluminescent tag was integrated at the HBG1 gene. Subsequent extensive characterization confirmed that the resulting reporter cell line closely mirrors the HUDEP2 characteristics and that the cells report fetal hemoglobin induction with high sensitivity and specificity. This novel reporter cell line is therefore highly suitable for evaluating genetic and pharmacologic strategies to induce fetal hemoglobin. Furthermore, it provides an assay compatible with high-throughput drug screening, exemplified by the identification of a cluster of known fetal hemoglobin inducers in a pilot study. This new tool is made available to the research community, with the aspiration that it will accelerate the search for safer and more effective strategies to reverse the hemoglobin switch.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.