DDX10调节结直肠癌细胞增殖、凋亡和干性需要依赖ATG10的自噬作用。

IF 2.7 3区 医学 Q3 ONCOLOGY Journal of Cancer Research and Clinical Oncology Pub Date : 2024-08-07 DOI:10.1007/s00432-024-05910-3
Kai Wang, Hao Zhan, Song Fan, Shicheng Chu, Hongli Xu, Hong Jiang
{"title":"DDX10调节结直肠癌细胞增殖、凋亡和干性需要依赖ATG10的自噬作用。","authors":"Kai Wang, Hao Zhan, Song Fan, Shicheng Chu, Hongli Xu, Hong Jiang","doi":"10.1007/s00432-024-05910-3","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains a highly prevalent gastrointestinal neoplasm, presenting significant prevalence and lethality rate. DEAD/H box RNA helicase 10 (DDX10) has been proposed as a potential oncogene in CRC, the specific action mechanism by which DDX10 modulates the aggressive biological cellular events in CRC remains implicitly elucidated, however. During this study, DDX10 expression was detected via RT-qPCR and Western blotting. Cell proliferation was estimated via EDU staining. TUNEL staining and Western blotting appraised cell apoptosis. Cell stemness was evaluated by sphere formation assay, RT-qPCR, Western blotting as well as immunofluorescence staining. Relevant assay kit examined aldehyde dehydrogenase (ALDH) activity. Western blotting and immunofluorescence staining also detected autophagy. DDX10 was hyper-expressed in CRC cells. Down-regulation of DDX10 hampered cell proliferation, aggravated the apoptosis while eliminated the ability to form spheroid cells in CRC. In addition, DDX10 deletion improved ATG10 expression and therefore activated autophagy in CRC cells. Consequently, ATG10 depletion or treatment with autophagy inhibitor 3-Methyladenine (3-MA) partially compensated the influences of DDX10 silencing on the proliferation, apoptosis and stemness of CRC cells. Accordingly, DDX10 deficiency may aggravate autophagy mediated by ATG10 to impede cell proliferation, stemness and facilitate cell apoptosis, hence blocking the progression of CRC.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306265/pdf/","citationCount":"0","resultStr":"{\"title\":\"ATG10-dependent autophagy is required for DDX10 to regulate cell proliferation, apoptosis and stemness in colorectal cancer.\",\"authors\":\"Kai Wang, Hao Zhan, Song Fan, Shicheng Chu, Hongli Xu, Hong Jiang\",\"doi\":\"10.1007/s00432-024-05910-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) remains a highly prevalent gastrointestinal neoplasm, presenting significant prevalence and lethality rate. DEAD/H box RNA helicase 10 (DDX10) has been proposed as a potential oncogene in CRC, the specific action mechanism by which DDX10 modulates the aggressive biological cellular events in CRC remains implicitly elucidated, however. During this study, DDX10 expression was detected via RT-qPCR and Western blotting. Cell proliferation was estimated via EDU staining. TUNEL staining and Western blotting appraised cell apoptosis. Cell stemness was evaluated by sphere formation assay, RT-qPCR, Western blotting as well as immunofluorescence staining. Relevant assay kit examined aldehyde dehydrogenase (ALDH) activity. Western blotting and immunofluorescence staining also detected autophagy. DDX10 was hyper-expressed in CRC cells. Down-regulation of DDX10 hampered cell proliferation, aggravated the apoptosis while eliminated the ability to form spheroid cells in CRC. In addition, DDX10 deletion improved ATG10 expression and therefore activated autophagy in CRC cells. Consequently, ATG10 depletion or treatment with autophagy inhibitor 3-Methyladenine (3-MA) partially compensated the influences of DDX10 silencing on the proliferation, apoptosis and stemness of CRC cells. Accordingly, DDX10 deficiency may aggravate autophagy mediated by ATG10 to impede cell proliferation, stemness and facilitate cell apoptosis, hence blocking the progression of CRC.</p>\",\"PeriodicalId\":15118,\"journal\":{\"name\":\"Journal of Cancer Research and Clinical Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cancer Research and Clinical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00432-024-05910-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05910-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)仍然是一种高发的消化道肿瘤,发病率和致死率都很高。DEAD/H盒RNA螺旋酶10(DDX10)已被认为是CRC的潜在致癌基因,但DDX10调节CRC侵袭性生物细胞事件的具体作用机制仍未明确。本研究通过 RT-qPCR 和 Western 印迹检测了 DDX10 的表达。通过 EDU 染色估计细胞增殖情况。TUNEL染色和Western印迹检测细胞凋亡。细胞干性通过球形成试验、RT-qPCR、Western 印迹以及免疫荧光染色进行评估。相关检测试剂盒检测了醛脱氢酶(ALDH)的活性。Western 印迹和免疫荧光染色也检测了自噬。DDX10 在 CRC 细胞中高表达。下调 DDX10 会阻碍细胞增殖,加剧细胞凋亡,同时消除 CRC 形成球形细胞的能力。此外,删除 DDX10 还能改善 ATG10 的表达,从而激活 CRC 细胞的自噬。因此,删除 ATG10 或用自噬抑制剂 3-甲基腺嘌呤(3-MA)处理可部分补偿 DDX10 沉默对 CRC 细胞增殖、凋亡和干性的影响。因此,DDX10的缺失可能会加剧ATG10介导的自噬,从而阻碍细胞增殖、干凋亡并促进细胞凋亡,从而阻止CRC的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATG10-dependent autophagy is required for DDX10 to regulate cell proliferation, apoptosis and stemness in colorectal cancer.

Colorectal cancer (CRC) remains a highly prevalent gastrointestinal neoplasm, presenting significant prevalence and lethality rate. DEAD/H box RNA helicase 10 (DDX10) has been proposed as a potential oncogene in CRC, the specific action mechanism by which DDX10 modulates the aggressive biological cellular events in CRC remains implicitly elucidated, however. During this study, DDX10 expression was detected via RT-qPCR and Western blotting. Cell proliferation was estimated via EDU staining. TUNEL staining and Western blotting appraised cell apoptosis. Cell stemness was evaluated by sphere formation assay, RT-qPCR, Western blotting as well as immunofluorescence staining. Relevant assay kit examined aldehyde dehydrogenase (ALDH) activity. Western blotting and immunofluorescence staining also detected autophagy. DDX10 was hyper-expressed in CRC cells. Down-regulation of DDX10 hampered cell proliferation, aggravated the apoptosis while eliminated the ability to form spheroid cells in CRC. In addition, DDX10 deletion improved ATG10 expression and therefore activated autophagy in CRC cells. Consequently, ATG10 depletion or treatment with autophagy inhibitor 3-Methyladenine (3-MA) partially compensated the influences of DDX10 silencing on the proliferation, apoptosis and stemness of CRC cells. Accordingly, DDX10 deficiency may aggravate autophagy mediated by ATG10 to impede cell proliferation, stemness and facilitate cell apoptosis, hence blocking the progression of CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
2.80%
发文量
577
审稿时长
2 months
期刊介绍: The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses. The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.
期刊最新文献
RAC1 serves as a prognostic factor and correlated with immune infiltration in liver hepatocellular carcinoma Circadian rhythms and breast cancer: from molecular level to therapeutic advancements The risk of endocrine interventions in carriers of a genetic predisposition for breast and gynecologic cancers: recommendations of the German Consortium for Hereditary Breast and Ovarian Cancer Apalutamide for non-metastatic castration-resistant prostate cancer (nmCRPC): real world data of a multicenter study. Integrative radiopathomics model for predicting progression-free survival in patients with nonmetastatic nasopharyngeal carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1