{"title":"过渡金属原子的基于 Hund´s 规则的多轨道离子哈密顿:高阶运动方程法方法和 Kondo 共振。","authors":"E C Goldberg, M S Tacca, F Flores","doi":"10.1088/1361-648X/ad6bdc","DOIUrl":null,"url":null,"abstract":"<p><p>A multi-orbital ionic Hamiltonian is presented to analyze the many-body properties of the d-transition metal atoms. This Hamiltonian considers all the atomic states obeying the first Hund's rule and also includes all orbital degeneracy, as well as the interaction of the atom with a metal. We analyze the solution of this ionic Hamiltonian by means of the equation of Motion method up to the fourth order,<i>V</i><sup>4</sup>, in the atom-metal interaction. Equations for the appropriate Green-functions for analyzing the chemical and transport properties of the system are given for different atom occupancies. In particular, we introduce a full analysis of the multi-orbital Hamiltonian including atomic configurations with<i>N, N</i>+ 1 and<i>N</i>- 1 electrons, and discuss its Kondo properties. The shells<i>d</i><sup>1</sup>,<i>d</i><sup>2</sup>and<i>d</i><sup>3</sup>are analyzed in detail and Kondo energies are deduced in all these cases showing good agreement with the conventional known results.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-orbital Hund's rules-based ionic Hamiltonian for transition metal atoms: high-order equation of motion method approach and Kondo resonances.\",\"authors\":\"E C Goldberg, M S Tacca, F Flores\",\"doi\":\"10.1088/1361-648X/ad6bdc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A multi-orbital ionic Hamiltonian is presented to analyze the many-body properties of the d-transition metal atoms. This Hamiltonian considers all the atomic states obeying the first Hund's rule and also includes all orbital degeneracy, as well as the interaction of the atom with a metal. We analyze the solution of this ionic Hamiltonian by means of the equation of Motion method up to the fourth order,<i>V</i><sup>4</sup>, in the atom-metal interaction. Equations for the appropriate Green-functions for analyzing the chemical and transport properties of the system are given for different atom occupancies. In particular, we introduce a full analysis of the multi-orbital Hamiltonian including atomic configurations with<i>N, N</i>+ 1 and<i>N</i>- 1 electrons, and discuss its Kondo properties. The shells<i>d</i><sup>1</sup>,<i>d</i><sup>2</sup>and<i>d</i><sup>3</sup>are analyzed in detail and Kondo energies are deduced in all these cases showing good agreement with the conventional known results.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad6bdc\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6bdc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A multi-orbital Hund's rules-based ionic Hamiltonian for transition metal atoms: high-order equation of motion method approach and Kondo resonances.
A multi-orbital ionic Hamiltonian is presented to analyze the many-body properties of the d-transition metal atoms. This Hamiltonian considers all the atomic states obeying the first Hund's rule and also includes all orbital degeneracy, as well as the interaction of the atom with a metal. We analyze the solution of this ionic Hamiltonian by means of the equation of Motion method up to the fourth order,V4, in the atom-metal interaction. Equations for the appropriate Green-functions for analyzing the chemical and transport properties of the system are given for different atom occupancies. In particular, we introduce a full analysis of the multi-orbital Hamiltonian including atomic configurations withN, N+ 1 andN- 1 electrons, and discuss its Kondo properties. The shellsd1,d2andd3are analyzed in detail and Kondo energies are deduced in all these cases showing good agreement with the conventional known results.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.