通过机器学习发现新型材料。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-08-14 DOI:10.1088/1361-648X/ad6bdb
Akinwumi Akinpelu, Mangladeep Bhullar, Yansun Yao
{"title":"通过机器学习发现新型材料。","authors":"Akinwumi Akinpelu, Mangladeep Bhullar, Yansun Yao","doi":"10.1088/1361-648X/ad6bdb","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning (ML) has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using ML techniques. Beginning with an introduction of the fundamental principles of ML methods, we subsequently examine the current research landscape on the applications of ML in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing ML within materials science, propose potential solutions, and outline future research directions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel materials through machine learning.\",\"authors\":\"Akinwumi Akinpelu, Mangladeep Bhullar, Yansun Yao\",\"doi\":\"10.1088/1361-648X/ad6bdb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning (ML) has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using ML techniques. Beginning with an introduction of the fundamental principles of ML methods, we subsequently examine the current research landscape on the applications of ML in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing ML within materials science, propose potential solutions, and outline future research directions.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad6bdb\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6bdb","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

新材料的实验探索在很大程度上依赖于费力的试错方法。除了需要大量的时间和资源外,传统实验和计算建模通常在巨大的化学空间内寻找目标材料方面受到限制。因此,创造创新技术以加速材料发现变得至关重要。最近,机器学习已成为材料发现的重要工具,由于其在预测准确性和时间效率方面的显著进步而备受关注。这种快速发展的计算技术加快了搜索和优化过程,并能以最低的计算成本预测材料特性,从而促进新型材料的发现。我们全面综述了最近通过使用机器学习技术预测材料及其特性来发现新材料的研究。我们首先介绍了机器学习方法的基本原理,随后考察了当前机器学习在预测材料特性方面的应用研究情况,从而发现新型材料。最后,我们讨论了在材料科学领域应用机器学习所面临的挑战,提出了潜在的解决方案,并概述了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of novel materials through machine learning.

Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning (ML) has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using ML techniques. Beginning with an introduction of the fundamental principles of ML methods, we subsequently examine the current research landscape on the applications of ML in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing ML within materials science, propose potential solutions, and outline future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Symmetry-controlled SrRuO3/SrTiO3/SrRuO3 magnetic tunnel junctions: spin polarization and its relevance to tunneling magnetoresistance Effect of Sr substitution on the structural, dielectric and ferroelectric property of BaTiO3. Intrinsic Exchange Bias from Interfacial Reconstruction in an Epitaxial NixCoyFe3-x-yO4(111)/α-Al2O3(0001) Thin Film Family. A multi-orbital Hund's rules-based ionic Hamiltonian for transition metal atoms: high-order equation of motion method approach and Kondo resonances. Weak antilocalization in the topological semimetal candidate YbAuSb.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1