在长度偏差采样条件下,受限平均存活时间与受限时间的函数关系推断。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1177/09622802241267812
Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang
{"title":"在长度偏差采样条件下,受限平均存活时间与受限时间的函数关系推断。","authors":"Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang","doi":"10.1177/09622802241267812","DOIUrl":null,"url":null,"abstract":"<p><p>The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1610-1623"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for restricted mean survival time as a function of restriction time under length-biased sampling.\",\"authors\":\"Fangfang Bai, Xiaoran Yang, Xuerong Chen, Xiaofei Wang\",\"doi\":\"10.1177/09622802241267812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1610-1623\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241267812\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241267812","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在涉及删减生存结果的临床研究中,受限平均生存时间(RMST)通常会引起直接的兴趣。它描述了从零时到特定时间点的生存曲线下的面积。在观察性队列研究中经常会遇到长度偏差采样的情况,当数据受到长度偏差采样影响时,现有方法无法通过单一模型估算不同限制时间的 RMST。在本文中,我们将 RMST 建模为长度偏倚抽样条件下限制时间的连续函数。本文提出了两种基于估计方程的方法来估计协变量的时变效应。最后,我们为所提出的估计器建立了渐近特性。为了证明有限样本的性能,我们进行了模拟研究。我们的程序还分析了两个真实数据实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference for restricted mean survival time as a function of restriction time under length-biased sampling.

The restricted mean survival time (RMST) is often of direct interest in clinical studies involving censored survival outcomes. It describes the area under the survival curve from time zero to a specified time point. When data are subject to length-biased sampling, as is frequently encountered in observational cohort studies, existing methods cannot estimate the RMST for various restriction times through a single model. In this article, we model the RMST as a continuous function of the restriction time under the setting of length-biased sampling. Two approaches based on estimating equations are proposed to estimate the time-varying effects of covariates. Finally, we establish the asymptotic properties for the proposed estimators. Simulation studies are performed to demonstrate the finite sample performance. Two real-data examples are analyzed by our procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1