{"title":"以受限平均存活时间为主要终点的混合治愈模型的样本量计算。","authors":"Zhaojin Li, Xiang Geng, Yawen Hou, Zheng Chen","doi":"10.1177/09622802241265501","DOIUrl":null,"url":null,"abstract":"<p><p>It is not uncommon for a substantial proportion of patients to be cured (or survive long-term) in clinical trials with time-to-event endpoints, such as the endometrial cancer trial. When designing a clinical trial, a mixture cure model should be used to fully consider the cure fraction. Previously, mixture cure model sample size calculations were based on the proportional hazards assumption of latency distribution between groups, and the log-rank test was used for deriving sample size formulas. In real studies, the latency distributions of the two groups often do not satisfy the proportional hazards assumptions. This article has derived a sample size calculation formula for a mixture cure model with restricted mean survival time as the primary endpoint, and did simulation and example studies. The restricted mean survival time test is not subject to proportional hazards assumptions, and the difference in treatment effect obtained can be quantified as the number of years (or months) increased or decreased in survival time, making it very convenient for clinical patient-physician communication. The simulation results showed that the sample sizes estimated by the restricted mean survival time test for the mixture cure model were accurate regardless of whether the proportional hazards assumptions were satisfied and were smaller than the sample sizes estimated by the log-rank test in most cases for the scenarios in which the proportional hazards assumptions were violated.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1546-1558"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample size calculation for mixture cure model with restricted mean survival time as a primary endpoint.\",\"authors\":\"Zhaojin Li, Xiang Geng, Yawen Hou, Zheng Chen\",\"doi\":\"10.1177/09622802241265501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is not uncommon for a substantial proportion of patients to be cured (or survive long-term) in clinical trials with time-to-event endpoints, such as the endometrial cancer trial. When designing a clinical trial, a mixture cure model should be used to fully consider the cure fraction. Previously, mixture cure model sample size calculations were based on the proportional hazards assumption of latency distribution between groups, and the log-rank test was used for deriving sample size formulas. In real studies, the latency distributions of the two groups often do not satisfy the proportional hazards assumptions. This article has derived a sample size calculation formula for a mixture cure model with restricted mean survival time as the primary endpoint, and did simulation and example studies. The restricted mean survival time test is not subject to proportional hazards assumptions, and the difference in treatment effect obtained can be quantified as the number of years (or months) increased or decreased in survival time, making it very convenient for clinical patient-physician communication. The simulation results showed that the sample sizes estimated by the restricted mean survival time test for the mixture cure model were accurate regardless of whether the proportional hazards assumptions were satisfied and were smaller than the sample sizes estimated by the log-rank test in most cases for the scenarios in which the proportional hazards assumptions were violated.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1546-1558\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241265501\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241265501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Sample size calculation for mixture cure model with restricted mean survival time as a primary endpoint.
It is not uncommon for a substantial proportion of patients to be cured (or survive long-term) in clinical trials with time-to-event endpoints, such as the endometrial cancer trial. When designing a clinical trial, a mixture cure model should be used to fully consider the cure fraction. Previously, mixture cure model sample size calculations were based on the proportional hazards assumption of latency distribution between groups, and the log-rank test was used for deriving sample size formulas. In real studies, the latency distributions of the two groups often do not satisfy the proportional hazards assumptions. This article has derived a sample size calculation formula for a mixture cure model with restricted mean survival time as the primary endpoint, and did simulation and example studies. The restricted mean survival time test is not subject to proportional hazards assumptions, and the difference in treatment effect obtained can be quantified as the number of years (or months) increased or decreased in survival time, making it very convenient for clinical patient-physician communication. The simulation results showed that the sample sizes estimated by the restricted mean survival time test for the mixture cure model were accurate regardless of whether the proportional hazards assumptions were satisfied and were smaller than the sample sizes estimated by the log-rank test in most cases for the scenarios in which the proportional hazards assumptions were violated.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)