{"title":"田径场草皮的可持续性:在两种裁剪高度下有机草皮和合成草皮的比较","authors":"William M. Dest, J. Scott Ebdon","doi":"10.1002/csc2.21317","DOIUrl":null,"url":null,"abstract":"Long‐term comparisons over several years between organic and synthetic management are lacking in sports turf research. Our objective was to investigate playing surface qualities and soil properties over an 8‐year period. For this trial, Kentucky bluegrass (KBG, <jats:italic>Poa pratensis</jats:italic> L.) sod was established and annually inter‐seeded with perennial ryegrass (<jats:italic>Lolium perenne</jats:italic> L.) and KBG. Factors included height of cut (3.2 and 6.4 cm) and management systems (MSs; synthetic and organic) with three replicates. Synthetic practices included chemical fertilizers and pesticides, while the organic system used hand‐weeding and biological fertilizers (leaf compost and naturally derived organics) with biological controls. In all years, wear was simulated in the fall using a slip‐wear machine and evaluated for playing qualities including visual wear tolerance, ball bounce (BB), surface hardness, and traction. Soil properties were evaluated in some years including pH, soil organic matter (SOM), soil bulk density, soil aggregate stability (SAG), and soil available P. Both MS received the same total N of 196 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup> but P applied varied with the MS (synthetic, 7.6 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup>; organic, 23.2 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup>). Synthetic practices provided acceptable visual wear tolerance (1–9, ≥6 acceptable) in 4 of 8 years compared to only 1 year for organic practices. Shorter cut grass (3.2 cm) consistently provided better visual wear tolerance (average = 5.6), harder surfaces (average = 51 <jats:italic>g</jats:italic>), and higher BB (average = 35.8%) consistent with accepted player standards. Synthetic practices afforded better tolerance to wear compared to organic practices in 5 of 8 years but little difference was observed in the other surface properties. Organic practices were consistently above 6.0 in soil pH (higher by 12%), 20% higher in soil available P, 25% higher in SOM, and with lower soil bulk density. SAG was higher following 8 years of simulated traffic by the last year of the test under organic practices. Results suggest competing benefits with synthetic practices affording better wear tolerance while organic practices promote better soil health.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainability of athletic field turf comparing organic and synthetic practices under two heights of cut\",\"authors\":\"William M. Dest, J. Scott Ebdon\",\"doi\":\"10.1002/csc2.21317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long‐term comparisons over several years between organic and synthetic management are lacking in sports turf research. Our objective was to investigate playing surface qualities and soil properties over an 8‐year period. For this trial, Kentucky bluegrass (KBG, <jats:italic>Poa pratensis</jats:italic> L.) sod was established and annually inter‐seeded with perennial ryegrass (<jats:italic>Lolium perenne</jats:italic> L.) and KBG. Factors included height of cut (3.2 and 6.4 cm) and management systems (MSs; synthetic and organic) with three replicates. Synthetic practices included chemical fertilizers and pesticides, while the organic system used hand‐weeding and biological fertilizers (leaf compost and naturally derived organics) with biological controls. In all years, wear was simulated in the fall using a slip‐wear machine and evaluated for playing qualities including visual wear tolerance, ball bounce (BB), surface hardness, and traction. Soil properties were evaluated in some years including pH, soil organic matter (SOM), soil bulk density, soil aggregate stability (SAG), and soil available P. Both MS received the same total N of 196 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup> but P applied varied with the MS (synthetic, 7.6 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup>; organic, 23.2 kg ha<jats:sup>−1</jats:sup> year<jats:sup>−1</jats:sup>). Synthetic practices provided acceptable visual wear tolerance (1–9, ≥6 acceptable) in 4 of 8 years compared to only 1 year for organic practices. Shorter cut grass (3.2 cm) consistently provided better visual wear tolerance (average = 5.6), harder surfaces (average = 51 <jats:italic>g</jats:italic>), and higher BB (average = 35.8%) consistent with accepted player standards. Synthetic practices afforded better tolerance to wear compared to organic practices in 5 of 8 years but little difference was observed in the other surface properties. Organic practices were consistently above 6.0 in soil pH (higher by 12%), 20% higher in soil available P, 25% higher in SOM, and with lower soil bulk density. SAG was higher following 8 years of simulated traffic by the last year of the test under organic practices. Results suggest competing benefits with synthetic practices affording better wear tolerance while organic practices promote better soil health.\",\"PeriodicalId\":10849,\"journal\":{\"name\":\"Crop Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/csc2.21317\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21317","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Sustainability of athletic field turf comparing organic and synthetic practices under two heights of cut
Long‐term comparisons over several years between organic and synthetic management are lacking in sports turf research. Our objective was to investigate playing surface qualities and soil properties over an 8‐year period. For this trial, Kentucky bluegrass (KBG, Poa pratensis L.) sod was established and annually inter‐seeded with perennial ryegrass (Lolium perenne L.) and KBG. Factors included height of cut (3.2 and 6.4 cm) and management systems (MSs; synthetic and organic) with three replicates. Synthetic practices included chemical fertilizers and pesticides, while the organic system used hand‐weeding and biological fertilizers (leaf compost and naturally derived organics) with biological controls. In all years, wear was simulated in the fall using a slip‐wear machine and evaluated for playing qualities including visual wear tolerance, ball bounce (BB), surface hardness, and traction. Soil properties were evaluated in some years including pH, soil organic matter (SOM), soil bulk density, soil aggregate stability (SAG), and soil available P. Both MS received the same total N of 196 kg ha−1 year−1 but P applied varied with the MS (synthetic, 7.6 kg ha−1 year−1; organic, 23.2 kg ha−1 year−1). Synthetic practices provided acceptable visual wear tolerance (1–9, ≥6 acceptable) in 4 of 8 years compared to only 1 year for organic practices. Shorter cut grass (3.2 cm) consistently provided better visual wear tolerance (average = 5.6), harder surfaces (average = 51 g), and higher BB (average = 35.8%) consistent with accepted player standards. Synthetic practices afforded better tolerance to wear compared to organic practices in 5 of 8 years but little difference was observed in the other surface properties. Organic practices were consistently above 6.0 in soil pH (higher by 12%), 20% higher in soil available P, 25% higher in SOM, and with lower soil bulk density. SAG was higher following 8 years of simulated traffic by the last year of the test under organic practices. Results suggest competing benefits with synthetic practices affording better wear tolerance while organic practices promote better soil health.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.