Andrew Srisuwananukorn, Jordan E Krull, Qin Ma, Ping Zhang, Alexander T Pearson, Ronald Hoffman
{"title":"人工智能在骨髓增生性肿瘤中的应用:综述。","authors":"Andrew Srisuwananukorn, Jordan E Krull, Qin Ma, Ping Zhang, Alexander T Pearson, Ronald Hoffman","doi":"10.1080/17474086.2024.2389997","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI) is a rapidly growing field of computational research with the potential to extract nuanced biomarkers for the prediction of outcomes of interest. AI implementations for the prediction for clinical outcomes for myeloproliferative neoplasms (MPNs) are currently under investigation.</p><p><strong>Areas covered: </strong>In this narrative review, we discuss AI investigations for the improvement of MPN clinical care utilizing either clinically available data or experimental laboratory findings. Abstracts and manuscripts were identified upon querying PubMed and the American Society of Hematology conference between 2000 and 2023. Overall, multidisciplinary researchers have developed AI methods in MPNs attempting to improve diagnostic accuracy, risk prediction, therapy selection, or pre-clinical investigations to identify candidate molecules as novel therapeutic agents.</p><p><strong>Expert opinion: </strong>It is our expert opinion that AI methods in MPN care and hematology will continue to grow with increasing clinical utility. We believe that AI models will assist healthcare workers as clinical decision support tools if appropriately developed with AI-specific regulatory guidelines. Though the reported findings in this review are early investigations for AI in MPNs, the collective work developed by the research community provides a promising framework for improving decision-making in the future of MPN clinical care.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":"669-677"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of artificial intelligence to myeloproliferative neoplasms: a narrative review.\",\"authors\":\"Andrew Srisuwananukorn, Jordan E Krull, Qin Ma, Ping Zhang, Alexander T Pearson, Ronald Hoffman\",\"doi\":\"10.1080/17474086.2024.2389997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Artificial intelligence (AI) is a rapidly growing field of computational research with the potential to extract nuanced biomarkers for the prediction of outcomes of interest. AI implementations for the prediction for clinical outcomes for myeloproliferative neoplasms (MPNs) are currently under investigation.</p><p><strong>Areas covered: </strong>In this narrative review, we discuss AI investigations for the improvement of MPN clinical care utilizing either clinically available data or experimental laboratory findings. Abstracts and manuscripts were identified upon querying PubMed and the American Society of Hematology conference between 2000 and 2023. Overall, multidisciplinary researchers have developed AI methods in MPNs attempting to improve diagnostic accuracy, risk prediction, therapy selection, or pre-clinical investigations to identify candidate molecules as novel therapeutic agents.</p><p><strong>Expert opinion: </strong>It is our expert opinion that AI methods in MPN care and hematology will continue to grow with increasing clinical utility. We believe that AI models will assist healthcare workers as clinical decision support tools if appropriately developed with AI-specific regulatory guidelines. Though the reported findings in this review are early investigations for AI in MPNs, the collective work developed by the research community provides a promising framework for improving decision-making in the future of MPN clinical care.</p>\",\"PeriodicalId\":12325,\"journal\":{\"name\":\"Expert Review of Hematology\",\"volume\":\" \",\"pages\":\"669-677\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17474086.2024.2389997\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2024.2389997","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Applications of artificial intelligence to myeloproliferative neoplasms: a narrative review.
Introduction: Artificial intelligence (AI) is a rapidly growing field of computational research with the potential to extract nuanced biomarkers for the prediction of outcomes of interest. AI implementations for the prediction for clinical outcomes for myeloproliferative neoplasms (MPNs) are currently under investigation.
Areas covered: In this narrative review, we discuss AI investigations for the improvement of MPN clinical care utilizing either clinically available data or experimental laboratory findings. Abstracts and manuscripts were identified upon querying PubMed and the American Society of Hematology conference between 2000 and 2023. Overall, multidisciplinary researchers have developed AI methods in MPNs attempting to improve diagnostic accuracy, risk prediction, therapy selection, or pre-clinical investigations to identify candidate molecules as novel therapeutic agents.
Expert opinion: It is our expert opinion that AI methods in MPN care and hematology will continue to grow with increasing clinical utility. We believe that AI models will assist healthcare workers as clinical decision support tools if appropriately developed with AI-specific regulatory guidelines. Though the reported findings in this review are early investigations for AI in MPNs, the collective work developed by the research community provides a promising framework for improving decision-making in the future of MPN clinical care.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.