Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit
{"title":"跨物种转录组学揭示了 Hirschfeldia incana 中重要光合作用基因的差异调控。","authors":"Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit","doi":"10.1093/g3journal/jkae175","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana.\",\"authors\":\"Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit\",\"doi\":\"10.1093/g3journal/jkae175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae175\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana.
Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.