{"title":"被低估的胰岛素抵抗测试联盟:揭示其重要性。","authors":"Komal Rani, Parag Patil, Prahalad Bharti, Saroj Kumar, Shailaja Prabhala","doi":"10.1515/hmbci-2023-0061","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes, obesity, and several other metabolic diseases are all largely attributed to the problem known as insulin resistance. Diagnosing insulin resistance promptly and accurately is essential for adequately managing and intervening in metabolic disorders. Several diagnostic methods have been developed to assess insulin resistance. However, each method has advantages and disadvantages. The most precise test is the hyperinsulinemic-euglycemic clamp, which examines the direct impact of insulin on glucose uptake by tissues. However, it is primarily utilized in research due to its complexity and intrusiveness. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and the Quantitative Insulin Sensitivity Check Index (QUICKI) are the second most used Insulin resistance tests in the clinical setup. These tests are based on measuring the fasting glucose and insulin levels. The Oral Glucose Tolerance Test (OGTT), Insulin tolerance test, and the Matsuda Index are further diagnostic procedures that shed light on insulin sensitivity. The improved techniques, such as the insulin suppression test and the minimal model analysis, provide substitutes for unique clinical circumstances. Additionally, including extra measurements with these tests, like waist circumference, lipid profiles, and inflammatory markers, can improve the evaluation of insulin resistance. In summary, identifying insulin resistance is essential for the early detection and treatment of various metabolic illnesses. To make educated judgments and improve patient care, healthcare workers should be aware of the different available diagnostic tests and how they are used in each situation. Insulin resistance detection and monitoring will require further study to improve current diagnostic approaches and create novel, less invasive techniques.</p>","PeriodicalId":13224,"journal":{"name":"Hormone Molecular Biology and Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The undervalued league of insulin resistance testing: uncovering their importance.\",\"authors\":\"Komal Rani, Parag Patil, Prahalad Bharti, Saroj Kumar, Shailaja Prabhala\",\"doi\":\"10.1515/hmbci-2023-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes, obesity, and several other metabolic diseases are all largely attributed to the problem known as insulin resistance. Diagnosing insulin resistance promptly and accurately is essential for adequately managing and intervening in metabolic disorders. Several diagnostic methods have been developed to assess insulin resistance. However, each method has advantages and disadvantages. The most precise test is the hyperinsulinemic-euglycemic clamp, which examines the direct impact of insulin on glucose uptake by tissues. However, it is primarily utilized in research due to its complexity and intrusiveness. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and the Quantitative Insulin Sensitivity Check Index (QUICKI) are the second most used Insulin resistance tests in the clinical setup. These tests are based on measuring the fasting glucose and insulin levels. The Oral Glucose Tolerance Test (OGTT), Insulin tolerance test, and the Matsuda Index are further diagnostic procedures that shed light on insulin sensitivity. The improved techniques, such as the insulin suppression test and the minimal model analysis, provide substitutes for unique clinical circumstances. Additionally, including extra measurements with these tests, like waist circumference, lipid profiles, and inflammatory markers, can improve the evaluation of insulin resistance. In summary, identifying insulin resistance is essential for the early detection and treatment of various metabolic illnesses. To make educated judgments and improve patient care, healthcare workers should be aware of the different available diagnostic tests and how they are used in each situation. Insulin resistance detection and monitoring will require further study to improve current diagnostic approaches and create novel, less invasive techniques.</p>\",\"PeriodicalId\":13224,\"journal\":{\"name\":\"Hormone Molecular Biology and Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormone Molecular Biology and Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/hmbci-2023-0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormone Molecular Biology and Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/hmbci-2023-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The undervalued league of insulin resistance testing: uncovering their importance.
Type 2 diabetes, obesity, and several other metabolic diseases are all largely attributed to the problem known as insulin resistance. Diagnosing insulin resistance promptly and accurately is essential for adequately managing and intervening in metabolic disorders. Several diagnostic methods have been developed to assess insulin resistance. However, each method has advantages and disadvantages. The most precise test is the hyperinsulinemic-euglycemic clamp, which examines the direct impact of insulin on glucose uptake by tissues. However, it is primarily utilized in research due to its complexity and intrusiveness. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and the Quantitative Insulin Sensitivity Check Index (QUICKI) are the second most used Insulin resistance tests in the clinical setup. These tests are based on measuring the fasting glucose and insulin levels. The Oral Glucose Tolerance Test (OGTT), Insulin tolerance test, and the Matsuda Index are further diagnostic procedures that shed light on insulin sensitivity. The improved techniques, such as the insulin suppression test and the minimal model analysis, provide substitutes for unique clinical circumstances. Additionally, including extra measurements with these tests, like waist circumference, lipid profiles, and inflammatory markers, can improve the evaluation of insulin resistance. In summary, identifying insulin resistance is essential for the early detection and treatment of various metabolic illnesses. To make educated judgments and improve patient care, healthcare workers should be aware of the different available diagnostic tests and how they are used in each situation. Insulin resistance detection and monitoring will require further study to improve current diagnostic approaches and create novel, less invasive techniques.
期刊介绍:
Hormone Molecular Biology and Clinical Investigation (HMBCI) is dedicated to the provision of basic data on molecular aspects of hormones in physiology and pathophysiology. The journal covers the treatment of major diseases, such as endocrine cancers (breast, prostate, endometrium, ovary), renal and lymphoid carcinoma, hypertension, cardiovascular systems, osteoporosis, hormone deficiency in menopause and andropause, obesity, diabetes, brain and related diseases, metabolic syndrome, sexual dysfunction, fetal and pregnancy diseases, as well as the treatment of dysfunctions and deficiencies. HMBCI covers new data on the different steps and factors involved in the mechanism of hormone action. It will equally examine the relation of hormones with the immune system and its environment, as well as new developments in hormone measurements. HMBCI is a blind peer reviewed journal and publishes in English: Original articles, Reviews, Mini Reviews, Short Communications, Case Reports, Letters to the Editor and Opinion papers. Ahead-of-print publishing ensures faster processing of fully proof-read, DOI-citable articles.