Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan
{"title":"将 CMC-PVA-GG 与 ZiF-8 结合制成复合水凝胶,用于伤口愈合。","authors":"Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan","doi":"10.1080/09205063.2024.2386224","DOIUrl":null,"url":null,"abstract":"<p><p>The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications.\",\"authors\":\"Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan\",\"doi\":\"10.1080/09205063.2024.2386224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2386224\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2386224","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications.
The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.