Capnodium alfenasii 与 Azadirachta indica 花外蜜腺的相互作用。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2024-08-07 DOI:10.1007/s00709-024-01977-4
Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos
{"title":"Capnodium alfenasii 与 Azadirachta indica 花外蜜腺的相互作用。","authors":"Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos","doi":"10.1007/s00709-024-01977-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.\",\"authors\":\"Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos\",\"doi\":\"10.1007/s00709-024-01977-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01977-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01977-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

煤烟霉是一种吸附性附生真菌,主要生长在昆虫的分泌物上,但也可能与植物的分泌物有关。在这项研究中,我们旨在描述 Capnodium alfenasii 煤烟霉与 Azadirachta indica 的花外芽蜜腺之间的相互作用。我们对未受 C. alfenasii 侵染和受 C. alfenasii 侵染的 A. indica 花外茎蜜腺的连续切片进行了解剖学和组织化学研究。测定了分泌的花蜜中可溶性糖的总含量,并评估了真菌在蒸馏水、葡萄糖和花蜜溶液中的分生孢子萌发情况。籼稻的嫩枝蜜腺是拉长的结构,成对出现在叶柄基部附近。渗出的花蜜平均每微升含有 534.8 微克的总可溶性糖,为分生孢子的发芽和真菌的生长提供了理想的条件。C. alfenasii菌丝在花蜜上生长,从角质层的破损处穿入,在角质层下移动,并通过细胞间和细胞内途径穿入分泌组织。本报告首次描述了 C. alfenasii 与籼稻蜜腺的相互作用,包括菌丝穿透蜜腺组织和植物防御机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.

Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Anti-microtubular activity of total alkaloids and aqueous extract of Detarium microcarpum a medicinal plant harvested in Mali. Plant intelligence dux: a comprehensive rebuttal of Kingsland and Taiz. Heterologous expression of the durum wheat TdHKT1;4-1 partially complements the mutant athkt1 in Arabidopsis thaliana under severe salt stress. The function of the ATG8 in the cilia and cortical microtubule maintenance of Euplotes amieti. Hydrogen peroxide modulates the expression of the target of rapamycin (TOR) and cell division in Arabidopsis thaliana.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1