Matthew D Johnson, Hiroyuki D Sakai, Bindusmita Paul, Takuro Nunoura, Somavally Dalvi, Manasi Mudaliyar, Doulin C Shepherd, Michiru Shimizu, Shubha Udupa, Moriya Ohkuma, Norio Kurosawa, Debnath Ghosal
{"title":"大型附着细胞器介导 Nanobdellota 古菌 YN1 与宿主之间的相互作用。","authors":"Matthew D Johnson, Hiroyuki D Sakai, Bindusmita Paul, Takuro Nunoura, Somavally Dalvi, Manasi Mudaliyar, Doulin C Shepherd, Michiru Shimizu, Shubha Udupa, Moriya Ohkuma, Norio Kurosawa, Debnath Ghosal","doi":"10.1093/ismejo/wrae154","DOIUrl":null,"url":null,"abstract":"<p><p>DPANN archaea are an enigmatic superphylum that are difficult to isolate and culture in the laboratory due to their specific culture conditions and apparent ectosymbiotic lifestyle. Here, we successfully isolated and cultivated a coculture system of a novel Nanobdellota archaeon YN1 and its host Sulfurisphaera ohwakuensis YN1HA. We characterized the coculture system by complementary methods, including metagenomics and metabolic pathway analysis, fluorescence microscopy, and high-resolution electron cryo-tomography (cryoET). We show that YN1 is deficient in essential metabolic processes and requires host resources to proliferate. CryoET imaging revealed an enormous attachment organelle present in the YN1 envelope that forms a direct interaction with the host cytoplasm, bridging the two cells. Together, our results unravel the molecular and structural basis of ectosymbiotic relationship between YN1 and YN1HA. This research broadens our understanding of DPANN biology and the versatile nature of their ectosymbiotic relationships.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420986/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large attachment organelle mediates interaction between Nanobdellota archaeon YN1 and its host.\",\"authors\":\"Matthew D Johnson, Hiroyuki D Sakai, Bindusmita Paul, Takuro Nunoura, Somavally Dalvi, Manasi Mudaliyar, Doulin C Shepherd, Michiru Shimizu, Shubha Udupa, Moriya Ohkuma, Norio Kurosawa, Debnath Ghosal\",\"doi\":\"10.1093/ismejo/wrae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DPANN archaea are an enigmatic superphylum that are difficult to isolate and culture in the laboratory due to their specific culture conditions and apparent ectosymbiotic lifestyle. Here, we successfully isolated and cultivated a coculture system of a novel Nanobdellota archaeon YN1 and its host Sulfurisphaera ohwakuensis YN1HA. We characterized the coculture system by complementary methods, including metagenomics and metabolic pathway analysis, fluorescence microscopy, and high-resolution electron cryo-tomography (cryoET). We show that YN1 is deficient in essential metabolic processes and requires host resources to proliferate. CryoET imaging revealed an enormous attachment organelle present in the YN1 envelope that forms a direct interaction with the host cytoplasm, bridging the two cells. Together, our results unravel the molecular and structural basis of ectosymbiotic relationship between YN1 and YN1HA. This research broadens our understanding of DPANN biology and the versatile nature of their ectosymbiotic relationships.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae154\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae154","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Large attachment organelle mediates interaction between Nanobdellota archaeon YN1 and its host.
DPANN archaea are an enigmatic superphylum that are difficult to isolate and culture in the laboratory due to their specific culture conditions and apparent ectosymbiotic lifestyle. Here, we successfully isolated and cultivated a coculture system of a novel Nanobdellota archaeon YN1 and its host Sulfurisphaera ohwakuensis YN1HA. We characterized the coculture system by complementary methods, including metagenomics and metabolic pathway analysis, fluorescence microscopy, and high-resolution electron cryo-tomography (cryoET). We show that YN1 is deficient in essential metabolic processes and requires host resources to proliferate. CryoET imaging revealed an enormous attachment organelle present in the YN1 envelope that forms a direct interaction with the host cytoplasm, bridging the two cells. Together, our results unravel the molecular and structural basis of ectosymbiotic relationship between YN1 and YN1HA. This research broadens our understanding of DPANN biology and the versatile nature of their ectosymbiotic relationships.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.