{"title":"基于高效深度 Q 学习方法的艾滋病患者最佳性传播感染控制方法。","authors":"Changyeon Yoon , Jaemoo Choi , Hee-Dae Kwon , Myungjoo Kang","doi":"10.1016/j.jtbi.2024.111914","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically administered and withdrawn to give patients relief from an arduous drug therapy. Numerous studies have been conducted to find better STI treatment strategies using various computational tools with mathematical models of HIV infection. In this paper, we leverage a modified version of the double deep Q network with prioritized experience replay to improve the performance of classic deep learning algorithms. Numerical simulation results show that our methodology produces significantly more optimal cost values for shorter treatment periods compared to other recent studies. Furthermore, our proposed algorithm performs well in one-day segment scenarios, whereas previous studies only reported results for five-day segment scenarios.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal STI controls for HIV patients based on an efficient deep Q learning method\",\"authors\":\"Changyeon Yoon , Jaemoo Choi , Hee-Dae Kwon , Myungjoo Kang\",\"doi\":\"10.1016/j.jtbi.2024.111914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically administered and withdrawn to give patients relief from an arduous drug therapy. Numerous studies have been conducted to find better STI treatment strategies using various computational tools with mathematical models of HIV infection. In this paper, we leverage a modified version of the double deep Q network with prioritized experience replay to improve the performance of classic deep learning algorithms. Numerical simulation results show that our methodology produces significantly more optimal cost values for shorter treatment periods compared to other recent studies. Furthermore, our proposed algorithm performs well in one-day segment scenarios, whereas previous studies only reported results for five-day segment scenarios.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324001991\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001991","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一种高效的计算工具,用于为人类免疫缺陷病毒(HIV)感染者提出有用的治疗方案。结构化治疗中断(STI)是一种定期给药和停药的治疗方案,目的是让患者从艰苦的药物治疗中解脱出来。为了找到更好的 STI 治疗策略,人们利用各种计算工具和 HIV 感染数学模型进行了大量研究。在本文中,我们利用具有优先经验重放功能的双深度 Q 网络的改进版来提高经典深度学习算法的性能。数值模拟结果表明,与近期的其他研究相比,我们的方法能在更短的治疗周期内产生明显更多的最优成本值。此外,我们提出的算法在一天的分段场景中表现良好,而之前的研究只报告了五天分段场景的结果。
Optimal STI controls for HIV patients based on an efficient deep Q learning method
We investigate an efficient computational tool to suggest useful treatment regimens for people infected with the human immunodeficiency virus (HIV). Structured treatment interruption (STI) is a regimen in which therapeutic drugs are periodically administered and withdrawn to give patients relief from an arduous drug therapy. Numerous studies have been conducted to find better STI treatment strategies using various computational tools with mathematical models of HIV infection. In this paper, we leverage a modified version of the double deep Q network with prioritized experience replay to improve the performance of classic deep learning algorithms. Numerical simulation results show that our methodology produces significantly more optimal cost values for shorter treatment periods compared to other recent studies. Furthermore, our proposed algorithm performs well in one-day segment scenarios, whereas previous studies only reported results for five-day segment scenarios.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.