具有动态采样无偏置接口前端的 2m 范围 711μW 人体信道通信收发器。

Guanjie Gu, Changgui Yang, Jian Zhao, Sijun Du, Yuxuan Luo, Bo Zhao
{"title":"具有动态采样无偏置接口前端的 2m 范围 711μW 人体信道通信收发器。","authors":"Guanjie Gu, Changgui Yang, Jian Zhao, Sijun Du, Yuxuan Luo, Bo Zhao","doi":"10.1109/TBCAS.2024.3439619","DOIUrl":null,"url":null,"abstract":"<p><p>Body Channel Communication (BCC) utilizes the body surface as a low-loss signal transmission medium, reducing the power consumption of wireless wearable devices. However, the effective communication range on the human body is limited in the state-of-the-art BCC transceivers, where the signal loss between the body surface and the BCC receiver remains one of the main bottlenecks. To reduce the interface loss, a high input impedance is desired by the BCC receiver, but the DC-biasing circuits decrease the input impedance. In this work, a dynamically-sampling IFE is proposed to eliminate the DC voltage bias, resulting in a 90kΩ high input impedance and a 94dB RF-IF conversion gain to reduce the interface loss in long-range BCC applications. The BCC transceiver chip is fabricated in 55nm CMOS process, taking a die area of 0.123mm<sup>2</sup>. Measured results show that the chip extends the BCC range to 2m for both the forward and backward paths, where the transmitter and receiver consume 711μW power in total.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2m-Range 711μW Body Channel Communication Transceiver Featuring Dynamically-Sampling Bias-Free Interface Front End.\",\"authors\":\"Guanjie Gu, Changgui Yang, Jian Zhao, Sijun Du, Yuxuan Luo, Bo Zhao\",\"doi\":\"10.1109/TBCAS.2024.3439619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body Channel Communication (BCC) utilizes the body surface as a low-loss signal transmission medium, reducing the power consumption of wireless wearable devices. However, the effective communication range on the human body is limited in the state-of-the-art BCC transceivers, where the signal loss between the body surface and the BCC receiver remains one of the main bottlenecks. To reduce the interface loss, a high input impedance is desired by the BCC receiver, but the DC-biasing circuits decrease the input impedance. In this work, a dynamically-sampling IFE is proposed to eliminate the DC voltage bias, resulting in a 90kΩ high input impedance and a 94dB RF-IF conversion gain to reduce the interface loss in long-range BCC applications. The BCC transceiver chip is fabricated in 55nm CMOS process, taking a die area of 0.123mm<sup>2</sup>. Measured results show that the chip extends the BCC range to 2m for both the forward and backward paths, where the transmitter and receiver consume 711μW power in total.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3439619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3439619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体信道通信(BCC)利用人体表面作为低损耗信号传输介质,从而降低了无线可穿戴设备的功耗。然而,最先进的 BCC 收发器在人体上的有效通信范围有限,体表和 BCC 接收器之间的信号损耗仍然是主要瓶颈之一。为了减少接口损耗,BCC 接收器需要高输入阻抗,但直流偏压电路会降低输入阻抗。本研究提出了一种动态采样 IFE,以消除直流电压偏置,从而实现 90kΩ 的高输入阻抗和 94dB 的射频-IF 转换增益,以减少远距离 BCC 应用中的接口损耗。BCC 收发器芯片采用 55 纳米 CMOS 工艺制造,芯片面积为 0.123 平方毫米。测量结果表明,该芯片将前向和后向路径的 BCC 范围扩大到 2 米,其中发射器和接收器的总功耗为 711μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 2m-Range 711μW Body Channel Communication Transceiver Featuring Dynamically-Sampling Bias-Free Interface Front End.

Body Channel Communication (BCC) utilizes the body surface as a low-loss signal transmission medium, reducing the power consumption of wireless wearable devices. However, the effective communication range on the human body is limited in the state-of-the-art BCC transceivers, where the signal loss between the body surface and the BCC receiver remains one of the main bottlenecks. To reduce the interface loss, a high input impedance is desired by the BCC receiver, but the DC-biasing circuits decrease the input impedance. In this work, a dynamically-sampling IFE is proposed to eliminate the DC voltage bias, resulting in a 90kΩ high input impedance and a 94dB RF-IF conversion gain to reduce the interface loss in long-range BCC applications. The BCC transceiver chip is fabricated in 55nm CMOS process, taking a die area of 0.123mm2. Measured results show that the chip extends the BCC range to 2m for both the forward and backward paths, where the transmitter and receiver consume 711μW power in total.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1