Langning Huo , Niko Koivumäki , Raquel A. Oliveira , Teemu Hakala , Lauri Markelin , Roope Näsi , Juha Suomalainen , Antti Polvivaara , Samuli Junttila , Eija Honkavaara
{"title":"利用多时高光谱无人机图像进行树皮甲虫萌发前检测:绿肩指数可显示树木细微的生命力衰退","authors":"Langning Huo , Niko Koivumäki , Raquel A. Oliveira , Teemu Hakala , Lauri Markelin , Roope Näsi , Juha Suomalainen , Antti Polvivaara , Samuli Junttila , Eija Honkavaara","doi":"10.1016/j.isprsjprs.2024.07.027","DOIUrl":null,"url":null,"abstract":"<div><p>Forest stress monitoring and in-time identification of forest disturbances are important to improve forest resilience to climate change. Fast-developing drone techniques and hyperspectral imagery provide tools for understanding the forest decline process under stress and contribute to focused monitoring. This study explored and developed hyperspectral drone imagery for early detection of forest stress caused by European spruce bark beetle <em>Ips typographus</em> (L.), before offspring emergence, which is crucial in controlling the spread but has been shown to be challenging.</p><p>This study challenges the highest possible detectability of infested trees using a hyperspectral drone system that provided images with very high spectral, spatial, and temporal resolutions in Southern Finland. Images were acquired bi-weekly, four times (T1, T2, T3, T4), covering 8 weeks from trees being attacked by the first filial generation (F1) to the beginning of second filial generation (F2) brood emergence. Very low separability was observed for the reflectance from healthy and attacked trees, but the first and second derivative reflectance captured vitality changes, with the green shoulder region (wavelengths 490–550 nm) exhibiting the highest separability of all wavelengths (400–1700 nm). We discovered that the peak and valley values of the first and second derivative curves in the green shoulder region consistently shifted with longer infestation time.</p><p>Based on this finding, we developed green shoulder indices. The detection rates were 0.24–0.31 and 0.76–0.83 for T3 and T4, higher than commonly used VIs such as the Photochemical Reflectance Index and the Red Edge Inflection Position, with detection rates of 0.69 and 0.34 for T4, respectively. We also proposed simplified green shoulder indices using the reflectance from three bands that can be used with multispectral cameras and satellite images for large area monitoring of forest health. We concluded that the detectability of infestations was very low for the first month after attack, and then rapidly increased before brood emergence. We highlighted the great potential of green shoulder indices in quantifying the photochemical functioning of the vegetation under stress. The methodology can potentially be applied for early identification of forests with declining vitality caused by various sources of forest stress and disturbances, such as infestations, diseases and drought.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"216 ","pages":"Pages 200-216"},"PeriodicalIF":10.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624002946/pdfft?md5=58f992d2b15e04cc22e920e7bc17c830&pid=1-s2.0-S0924271624002946-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bark beetle pre-emergence detection using multi-temporal hyperspectral drone images: Green shoulder indices can indicate subtle tree vitality decline\",\"authors\":\"Langning Huo , Niko Koivumäki , Raquel A. Oliveira , Teemu Hakala , Lauri Markelin , Roope Näsi , Juha Suomalainen , Antti Polvivaara , Samuli Junttila , Eija Honkavaara\",\"doi\":\"10.1016/j.isprsjprs.2024.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forest stress monitoring and in-time identification of forest disturbances are important to improve forest resilience to climate change. Fast-developing drone techniques and hyperspectral imagery provide tools for understanding the forest decline process under stress and contribute to focused monitoring. This study explored and developed hyperspectral drone imagery for early detection of forest stress caused by European spruce bark beetle <em>Ips typographus</em> (L.), before offspring emergence, which is crucial in controlling the spread but has been shown to be challenging.</p><p>This study challenges the highest possible detectability of infested trees using a hyperspectral drone system that provided images with very high spectral, spatial, and temporal resolutions in Southern Finland. Images were acquired bi-weekly, four times (T1, T2, T3, T4), covering 8 weeks from trees being attacked by the first filial generation (F1) to the beginning of second filial generation (F2) brood emergence. Very low separability was observed for the reflectance from healthy and attacked trees, but the first and second derivative reflectance captured vitality changes, with the green shoulder region (wavelengths 490–550 nm) exhibiting the highest separability of all wavelengths (400–1700 nm). We discovered that the peak and valley values of the first and second derivative curves in the green shoulder region consistently shifted with longer infestation time.</p><p>Based on this finding, we developed green shoulder indices. The detection rates were 0.24–0.31 and 0.76–0.83 for T3 and T4, higher than commonly used VIs such as the Photochemical Reflectance Index and the Red Edge Inflection Position, with detection rates of 0.69 and 0.34 for T4, respectively. We also proposed simplified green shoulder indices using the reflectance from three bands that can be used with multispectral cameras and satellite images for large area monitoring of forest health. We concluded that the detectability of infestations was very low for the first month after attack, and then rapidly increased before brood emergence. We highlighted the great potential of green shoulder indices in quantifying the photochemical functioning of the vegetation under stress. The methodology can potentially be applied for early identification of forests with declining vitality caused by various sources of forest stress and disturbances, such as infestations, diseases and drought.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"216 \",\"pages\":\"Pages 200-216\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002946/pdfft?md5=58f992d2b15e04cc22e920e7bc17c830&pid=1-s2.0-S0924271624002946-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002946\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002946","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Bark beetle pre-emergence detection using multi-temporal hyperspectral drone images: Green shoulder indices can indicate subtle tree vitality decline
Forest stress monitoring and in-time identification of forest disturbances are important to improve forest resilience to climate change. Fast-developing drone techniques and hyperspectral imagery provide tools for understanding the forest decline process under stress and contribute to focused monitoring. This study explored and developed hyperspectral drone imagery for early detection of forest stress caused by European spruce bark beetle Ips typographus (L.), before offspring emergence, which is crucial in controlling the spread but has been shown to be challenging.
This study challenges the highest possible detectability of infested trees using a hyperspectral drone system that provided images with very high spectral, spatial, and temporal resolutions in Southern Finland. Images were acquired bi-weekly, four times (T1, T2, T3, T4), covering 8 weeks from trees being attacked by the first filial generation (F1) to the beginning of second filial generation (F2) brood emergence. Very low separability was observed for the reflectance from healthy and attacked trees, but the first and second derivative reflectance captured vitality changes, with the green shoulder region (wavelengths 490–550 nm) exhibiting the highest separability of all wavelengths (400–1700 nm). We discovered that the peak and valley values of the first and second derivative curves in the green shoulder region consistently shifted with longer infestation time.
Based on this finding, we developed green shoulder indices. The detection rates were 0.24–0.31 and 0.76–0.83 for T3 and T4, higher than commonly used VIs such as the Photochemical Reflectance Index and the Red Edge Inflection Position, with detection rates of 0.69 and 0.34 for T4, respectively. We also proposed simplified green shoulder indices using the reflectance from three bands that can be used with multispectral cameras and satellite images for large area monitoring of forest health. We concluded that the detectability of infestations was very low for the first month after attack, and then rapidly increased before brood emergence. We highlighted the great potential of green shoulder indices in quantifying the photochemical functioning of the vegetation under stress. The methodology can potentially be applied for early identification of forests with declining vitality caused by various sources of forest stress and disturbances, such as infestations, diseases and drought.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.