Clare T Muller, Andreu Cera, Sara Palacio, Michael J Moore, Pablo Tejero, Juan F Mota, Rebecca E Drenovsky
{"title":"生长在两个不同气候区石膏土壤上的植物营养趋同。","authors":"Clare T Muller, Andreu Cera, Sara Palacio, Michael J Moore, Pablo Tejero, Juan F Mota, Rebecca E Drenovsky","doi":"10.1093/aob/mcae127","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Soil endemics have long fascinated botanists owing to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of nutrient composition of plants than climate or evolutionary constraints.</p><p><strong>Methods: </strong>We worked on gypsum soils. We analysed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants.</p><p><strong>Key results: </strong>Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar sulphur and higher whole-plant magnesium than their non-endemic relatives, irrespective of geographical location or phylogenetic history. Sulphur and magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar calcium, whereas Poaceae did not. In contrast, plant concentrations of phosphorus were mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints.</p><p><strong>Conclusions: </strong>Plant specialization to a unique soil can strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"1003-1012"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687619/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nutritional convergence in plants growing on gypsum soils in two distinct climatic regions.\",\"authors\":\"Clare T Muller, Andreu Cera, Sara Palacio, Michael J Moore, Pablo Tejero, Juan F Mota, Rebecca E Drenovsky\",\"doi\":\"10.1093/aob/mcae127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Soil endemics have long fascinated botanists owing to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of nutrient composition of plants than climate or evolutionary constraints.</p><p><strong>Methods: </strong>We worked on gypsum soils. We analysed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants.</p><p><strong>Key results: </strong>Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar sulphur and higher whole-plant magnesium than their non-endemic relatives, irrespective of geographical location or phylogenetic history. Sulphur and magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar calcium, whereas Poaceae did not. In contrast, plant concentrations of phosphorus were mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints.</p><p><strong>Conclusions: </strong>Plant specialization to a unique soil can strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"1003-1012\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687619/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae127\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae127","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Nutritional convergence in plants growing on gypsum soils in two distinct climatic regions.
Background and aims: Soil endemics have long fascinated botanists owing to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of nutrient composition of plants than climate or evolutionary constraints.
Methods: We worked on gypsum soils. We analysed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants.
Key results: Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar sulphur and higher whole-plant magnesium than their non-endemic relatives, irrespective of geographical location or phylogenetic history. Sulphur and magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar calcium, whereas Poaceae did not. In contrast, plant concentrations of phosphorus were mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints.
Conclusions: Plant specialization to a unique soil can strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.