制备过冷液态氩并测试其冷却能力。

IF 2.3 3区 生物学 Q2 BIOLOGY Cryobiology Pub Date : 2024-08-20 DOI:10.1016/j.cryobiol.2024.104949
Mingsheng Li , Yifei Sun , Xianguo Xu , Shaozhi Zhang
{"title":"制备过冷液态氩并测试其冷却能力。","authors":"Mingsheng Li ,&nbsp;Yifei Sun ,&nbsp;Xianguo Xu ,&nbsp;Shaozhi Zhang","doi":"10.1016/j.cryobiol.2024.104949","DOIUrl":null,"url":null,"abstract":"<div><p>Subcooled liquid nitrogen and nitrogen slush are often considered for high-speed cooling, but their preparation and maintenance are not easy. To address this issue, a unique device was designed to prepare subcooled liquid argon (SLA) using liquid nitrogen (LN). The cooling process was mathematically modeled to predict the preparation time. If the interlayer space between LN and liquid argon is filled with nitrogen gas, liquid argon could be cooled to 3.5 K subcooling within 1 h. If the interlayer is filled with air, 2 h are required to achieve the same subcooled state. An additional 1000 mL of LN was required for the preparation of 600 mL of 3.5 K SLA. The cooling tests of 3 μL microdroplets in 3 mm–6 mm capillary quartz tubes were duplicated to evaluate the potential of SLA. It was found that the cooling rate of microdroplet in the 3.5 K subcooled SLA is very close to that in the 3 K subcooled LN, higher than that in the saturated LN. The convenience of preparation and maintenance of SLA can make it good choice of cryogen for cryopreservation of biomaterials.</p></div>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":"116 ","pages":"Article 104949"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of subcooled liquid argon and test of its cooling ability\",\"authors\":\"Mingsheng Li ,&nbsp;Yifei Sun ,&nbsp;Xianguo Xu ,&nbsp;Shaozhi Zhang\",\"doi\":\"10.1016/j.cryobiol.2024.104949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subcooled liquid nitrogen and nitrogen slush are often considered for high-speed cooling, but their preparation and maintenance are not easy. To address this issue, a unique device was designed to prepare subcooled liquid argon (SLA) using liquid nitrogen (LN). The cooling process was mathematically modeled to predict the preparation time. If the interlayer space between LN and liquid argon is filled with nitrogen gas, liquid argon could be cooled to 3.5 K subcooling within 1 h. If the interlayer is filled with air, 2 h are required to achieve the same subcooled state. An additional 1000 mL of LN was required for the preparation of 600 mL of 3.5 K SLA. The cooling tests of 3 μL microdroplets in 3 mm–6 mm capillary quartz tubes were duplicated to evaluate the potential of SLA. It was found that the cooling rate of microdroplet in the 3.5 K subcooled SLA is very close to that in the 3 K subcooled LN, higher than that in the saturated LN. The convenience of preparation and maintenance of SLA can make it good choice of cryogen for cryopreservation of biomaterials.</p></div>\",\"PeriodicalId\":10897,\"journal\":{\"name\":\"Cryobiology\",\"volume\":\"116 \",\"pages\":\"Article 104949\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224024001044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024001044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过冷液氮和氮浆经常被考虑用于高速冷却,但其制备和维护并不容易。为解决这一问题,我们设计了一种独特的装置,利用液氮制备过冷液态氩(SLA)。对冷却过程进行了数学建模,以预测制备时间。如果液氮和液氩之间的夹层空间充满氮气,液氩可在一小时内冷却到 3.5 K 的过冷度。如果层间充入空气,则需要两个小时才能达到相同的过冷度。制备 600 mL 3.5 K SLA 需要额外的 1000 mL LN。在 3 毫米至 6 毫米的毛细石英管中重复进行了 3 微升微滴的冷却测试,以评估 SLA 的潜力。结果发现,微滴在 3.5 K 过冷 SLA 中的冷却速度与在 3 K 过冷 LN 中的冷却速度非常接近,高于在饱和 LN 中的冷却速度。SLA 易于制备和维护,是生物材料低温保存的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of subcooled liquid argon and test of its cooling ability

Subcooled liquid nitrogen and nitrogen slush are often considered for high-speed cooling, but their preparation and maintenance are not easy. To address this issue, a unique device was designed to prepare subcooled liquid argon (SLA) using liquid nitrogen (LN). The cooling process was mathematically modeled to predict the preparation time. If the interlayer space between LN and liquid argon is filled with nitrogen gas, liquid argon could be cooled to 3.5 K subcooling within 1 h. If the interlayer is filled with air, 2 h are required to achieve the same subcooled state. An additional 1000 mL of LN was required for the preparation of 600 mL of 3.5 K SLA. The cooling tests of 3 μL microdroplets in 3 mm–6 mm capillary quartz tubes were duplicated to evaluate the potential of SLA. It was found that the cooling rate of microdroplet in the 3.5 K subcooled SLA is very close to that in the 3 K subcooled LN, higher than that in the saturated LN. The convenience of preparation and maintenance of SLA can make it good choice of cryogen for cryopreservation of biomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryobiology
Cryobiology 生物-生理学
CiteScore
5.40
自引率
7.40%
发文量
71
审稿时长
56 days
期刊介绍: Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine. Research Areas include: • Cryoprotective additives and their pharmacological actions • Cryosurgery • Freeze-drying • Freezing • Frost hardiness in plants • Hibernation • Hypothermia • Medical applications of reduced temperature • Perfusion of organs • All pertinent methodologies Cryobiology is the official journal of the Society for Cryobiology.
期刊最新文献
Effects of alpha-lipoic acid and sildenafil citrate on sperm quality in asthenozoospermic men during freezing-thawing processes. Effects of oxidative stress on the changes of viability of Paeonia lactiflora seeds with different water content before and after cryopreservation. KCl enhances the cryoablation-induced antitumor immune response: A hepatocellular carcinoma murine model research Nanocrystalline cerium dioxide reduces recrystallization in cryopreservation solutions. The thermodynamic principles of isochoric freezing pressure-aided supercooling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1