Daniel Alvarez-Simon, Saliha Ait Yahia, Camille Audousset, Martine Fanton d'Andon, Mathias Chamaillard, Ivo Gomperts Boneca, Anne Tsicopoulos
{"title":"局部受体相互作用蛋白激酶2抑制剂可减轻HDM诱发的哮喘。","authors":"Daniel Alvarez-Simon, Saliha Ait Yahia, Camille Audousset, Martine Fanton d'Andon, Mathias Chamaillard, Ivo Gomperts Boneca, Anne Tsicopoulos","doi":"10.1183/13993003.02288-2023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>House dust mite is the most frequent trigger of allergic asthma, with innate and adaptive immune mechanisms playing critical roles in outcomes. We recently identified the nucleotide-binding oligomerisation domain 1 (NOD1)/receptor-interacting serine/threonine protein kinase 2 (RIPK2) signalling pathway as a relevant contributor to murine house dust mite-induced asthma. This study aimed to evaluate the effectiveness of a pharmacological RIPK2 inhibitor administered locally as a preventive and therapeutic approach using a house dust mite-induced asthma model in wild-type and humanised NOD1 mice harbouring an asthma-associated risk allele, and its relevance using air-liquid interface epithelial cultures from asthma patients.</p><p><strong>Methods: </strong>A RIPK2 inhibitor was administered intranasally either preventively or therapeutically in a murine house dust mite-induced asthma model. Airway hyperresponsiveness, bronchoalveolar lavage composition, cytokine/chemokine expression and mucus production were evaluated, as well as the effect of the inhibitor on precision-cut lung slices. Furthermore, the inhibitor was tested on air-liquid interface epithelial cultures from asthma patients and controls.</p><p><strong>Results: </strong>While local preventive administration of the RIPK2 inhibitor reduced airway hyperresponsiveness, eosinophilia, mucus production, T-helper type 2 cytokines and interleukin 33 (IL-33) in wild-type mice, its therapeutic administration failed to reduce the above parameters, except IL-33. By contrast, therapeutic RIPK2 inhibition mitigated all asthma features in humanised NOD1 mice. Results in precision-cut lung slices emphasised an early role of thymic stromal lymphopoietin and IL-33 in the NOD1-dependent response to house dust mite, and a late effect of NOD1 signalling on IL-13 effector response. RIPK2 inhibitor downregulated thymic stromal lymphopoietin and chemokines in house dust mite-stimulated epithelial cultures from asthma patients.</p><p><strong>Conclusion: </strong>These data support that local interference of the NOD1 signalling pathway through RIPK2 inhibition may represent a new therapeutic approach in house dust mite-induced asthma.</p>","PeriodicalId":12265,"journal":{"name":"European Respiratory Journal","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local receptor-interacting protein kinase 2 inhibition mitigates house dust mite-induced asthma.\",\"authors\":\"Daniel Alvarez-Simon, Saliha Ait Yahia, Camille Audousset, Martine Fanton d'Andon, Mathias Chamaillard, Ivo Gomperts Boneca, Anne Tsicopoulos\",\"doi\":\"10.1183/13993003.02288-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>House dust mite is the most frequent trigger of allergic asthma, with innate and adaptive immune mechanisms playing critical roles in outcomes. We recently identified the nucleotide-binding oligomerisation domain 1 (NOD1)/receptor-interacting serine/threonine protein kinase 2 (RIPK2) signalling pathway as a relevant contributor to murine house dust mite-induced asthma. This study aimed to evaluate the effectiveness of a pharmacological RIPK2 inhibitor administered locally as a preventive and therapeutic approach using a house dust mite-induced asthma model in wild-type and humanised NOD1 mice harbouring an asthma-associated risk allele, and its relevance using air-liquid interface epithelial cultures from asthma patients.</p><p><strong>Methods: </strong>A RIPK2 inhibitor was administered intranasally either preventively or therapeutically in a murine house dust mite-induced asthma model. Airway hyperresponsiveness, bronchoalveolar lavage composition, cytokine/chemokine expression and mucus production were evaluated, as well as the effect of the inhibitor on precision-cut lung slices. Furthermore, the inhibitor was tested on air-liquid interface epithelial cultures from asthma patients and controls.</p><p><strong>Results: </strong>While local preventive administration of the RIPK2 inhibitor reduced airway hyperresponsiveness, eosinophilia, mucus production, T-helper type 2 cytokines and interleukin 33 (IL-33) in wild-type mice, its therapeutic administration failed to reduce the above parameters, except IL-33. By contrast, therapeutic RIPK2 inhibition mitigated all asthma features in humanised NOD1 mice. Results in precision-cut lung slices emphasised an early role of thymic stromal lymphopoietin and IL-33 in the NOD1-dependent response to house dust mite, and a late effect of NOD1 signalling on IL-13 effector response. RIPK2 inhibitor downregulated thymic stromal lymphopoietin and chemokines in house dust mite-stimulated epithelial cultures from asthma patients.</p><p><strong>Conclusion: </strong>These data support that local interference of the NOD1 signalling pathway through RIPK2 inhibition may represent a new therapeutic approach in house dust mite-induced asthma.</p>\",\"PeriodicalId\":12265,\"journal\":{\"name\":\"European Respiratory Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Respiratory Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1183/13993003.02288-2023\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/13993003.02288-2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Local receptor-interacting protein kinase 2 inhibition mitigates house dust mite-induced asthma.
Background: House dust mite is the most frequent trigger of allergic asthma, with innate and adaptive immune mechanisms playing critical roles in outcomes. We recently identified the nucleotide-binding oligomerisation domain 1 (NOD1)/receptor-interacting serine/threonine protein kinase 2 (RIPK2) signalling pathway as a relevant contributor to murine house dust mite-induced asthma. This study aimed to evaluate the effectiveness of a pharmacological RIPK2 inhibitor administered locally as a preventive and therapeutic approach using a house dust mite-induced asthma model in wild-type and humanised NOD1 mice harbouring an asthma-associated risk allele, and its relevance using air-liquid interface epithelial cultures from asthma patients.
Methods: A RIPK2 inhibitor was administered intranasally either preventively or therapeutically in a murine house dust mite-induced asthma model. Airway hyperresponsiveness, bronchoalveolar lavage composition, cytokine/chemokine expression and mucus production were evaluated, as well as the effect of the inhibitor on precision-cut lung slices. Furthermore, the inhibitor was tested on air-liquid interface epithelial cultures from asthma patients and controls.
Results: While local preventive administration of the RIPK2 inhibitor reduced airway hyperresponsiveness, eosinophilia, mucus production, T-helper type 2 cytokines and interleukin 33 (IL-33) in wild-type mice, its therapeutic administration failed to reduce the above parameters, except IL-33. By contrast, therapeutic RIPK2 inhibition mitigated all asthma features in humanised NOD1 mice. Results in precision-cut lung slices emphasised an early role of thymic stromal lymphopoietin and IL-33 in the NOD1-dependent response to house dust mite, and a late effect of NOD1 signalling on IL-13 effector response. RIPK2 inhibitor downregulated thymic stromal lymphopoietin and chemokines in house dust mite-stimulated epithelial cultures from asthma patients.
Conclusion: These data support that local interference of the NOD1 signalling pathway through RIPK2 inhibition may represent a new therapeutic approach in house dust mite-induced asthma.
期刊介绍:
The European Respiratory Journal (ERJ) is the flagship journal of the European Respiratory Society. It has a current impact factor of 24.9. The journal covers various aspects of adult and paediatric respiratory medicine, including cell biology, epidemiology, immunology, oncology, pathophysiology, imaging, occupational medicine, intensive care, sleep medicine, and thoracic surgery. In addition to original research material, the ERJ publishes editorial commentaries, reviews, short research letters, and correspondence to the editor. The articles are published continuously and collected into 12 monthly issues in two volumes per year.