{"title":"自由运动动物的帕氏神经元对自我和环境的编码","authors":"Josef Turecek, David D Ginty","doi":"10.1016/j.neuron.2024.07.008","DOIUrl":null,"url":null,"abstract":"<p><p>Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (∼50-2,000 Hz); however, it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over 2 m away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3267-3277.e6"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coding of self and environment by Pacinian neurons in freely moving animals.\",\"authors\":\"Josef Turecek, David D Ginty\",\"doi\":\"10.1016/j.neuron.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (∼50-2,000 Hz); however, it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over 2 m away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"3267-3277.e6\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.07.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.07.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Coding of self and environment by Pacinian neurons in freely moving animals.
Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (∼50-2,000 Hz); however, it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over 2 m away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.