对 vgsc 基因的无偏差序列分析表明,在库蚊中存在新型和已知的基因敲除抗性突变,这对病媒控制措施提出了挑战

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-08-09 DOI:10.1007/s10340-024-01818-6
Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre
{"title":"对 vgsc 基因的无偏差序列分析表明,在库蚊中存在新型和已知的基因敲除抗性突变,这对病媒控制措施提出了挑战","authors":"Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre","doi":"10.1007/s10340-024-01818-6","DOIUrl":null,"url":null,"abstract":"<p>Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. <i>Culex pipiens</i> is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 <i>Cx. pipiens</i> specimens from Italy and Greece to investigate the whole coding sequence of the <i>vgsc</i> gene for the presence of known and potential knock-down resistance (<i>kdr</i>) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-<i>kdr</i> haplotype—i.e. the association of <i>kdr</i>-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in <i>Musca domestica</i> – was revealed for the first time in mosquitoes. Three more potential <i>kdr</i> alleles were detected for the first time in <i>Cx. pipiens</i> and multiple <i>kdr</i> variants were observed for locus 1014, with allele 1014F, reaching frequencies &gt; 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different <i>kdr</i>-variants (including in particular the super-<i>kdr</i> haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"13 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbiased sequence analysis of vgsc gene reveals circulation of novel and known knock-down resistance mutations in Culex pipiens, challenging vector control measures\",\"authors\":\"Verena Pichler, Kentaro Itokawa, Beniamino Caputo, Carlo Maria De Marco, Paola Serini, Romeo Bellini, Rodolfo Veronesi, Claudio De Liberato, Federico Romiti, Daniele Arnoldi, Annapaola Rizzoli, Riccardo Paolo Lia, Domenico Otranto, Antonios Michaelakis, Marina Bisia, Noboru Minakawa, Shinji Kasai, Alessandra della Torre\",\"doi\":\"10.1007/s10340-024-01818-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. <i>Culex pipiens</i> is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 <i>Cx. pipiens</i> specimens from Italy and Greece to investigate the whole coding sequence of the <i>vgsc</i> gene for the presence of known and potential knock-down resistance (<i>kdr</i>) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-<i>kdr</i> haplotype—i.e. the association of <i>kdr</i>-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in <i>Musca domestica</i> – was revealed for the first time in mosquitoes. Three more potential <i>kdr</i> alleles were detected for the first time in <i>Cx. pipiens</i> and multiple <i>kdr</i> variants were observed for locus 1014, with allele 1014F, reaching frequencies &gt; 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different <i>kdr</i>-variants (including in particular the super-<i>kdr</i> haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01818-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01818-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

针对电压门控钠通道(VGSC)的除虫菊酯是控制虫媒病毒疾病循环的基础。因此,除虫菊酯抗药性在病媒物种中的传播是一个重大的公共卫生问题。库蚊是欧洲数量最多的蚊子物种之一,也是西尼罗河病毒的主要病媒,西尼罗河病毒是全球虫媒病毒性脑炎的主要病因。尽管如此,对其抗药性状况的监测和对其潜在机制的了解却普遍被忽视。在此,我们对来自意大利和希腊的 82 只 Cx. pipiens 标本进行了寡聚杂交捕获方法,以研究 vgsc 基因的整个编码序列是否存在与昆虫对拟除虫菊酯的靶位抗性相关的已知和潜在抗性基因突变(kdr)。在分析发现的 26 个非同义替换中,首次在蚊子中发现了超级 kdr 单倍型--即 kdr 等位基因 918T 和 1014F 的关联,已知这两个等位基因可赋予家蝇强烈的增强抗性表型。在 Cx. pipiens 中首次检测到另外三个潜在的 kdr 等位基因,在基因座 1014 中观察到多个 kdr 变体,其中等位基因 1014F 的频率达到 80%。总之,研究结果表明情况令人担忧,可能会影响控制西尼罗河病毒在南欧爆发的能力。为避免出现这种情况,需要加强抗药性监测,并改进诊断工具箱,以便轻松检测不同的 kdr 变体(尤其包括超级 kdr 单倍型),并对检测到的变体的抗药性表型进行后续功能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unbiased sequence analysis of vgsc gene reveals circulation of novel and known knock-down resistance mutations in Culex pipiens, challenging vector control measures

Pyrethroids, targeting the voltage gated sodium channel (VGSC), are fundamental for the control of arboviral disease circulation. The spread of pyrethroid resistance among vector species represents thus a major public health concern. Culex pipiens is one of the most abundant European mosquito species and main vector of West Nile virus, leading cause of arboviral encephalitis worldwide. Despite this, monitoring of its resistance status and the understanding of underlying mechanisms are widely neglected. Herein, we performed an oligo-hybridization capture approach on 82 Cx. pipiens specimens from Italy and Greece to investigate the whole coding sequence of the vgsc gene for the presence of known and potential knock-down resistance (kdr) mutations associated with target-site resistance to pyrethroids in insects. Among the 26 non-synonymous substitutions revealed by the analysis, the super-kdr haplotype—i.e. the association of kdr-alleles 918T and 1014F, known for conferring a strongly enhanced resistance phenotype in Musca domestica – was revealed for the first time in mosquitoes. Three more potential kdr alleles were detected for the first time in Cx. pipiens and multiple kdr variants were observed for locus 1014, with allele 1014F, reaching frequencies > 80%. Overall, results depict a worrisome situation that could affect the ability to control West Nile virus outbreaks in southern Europe. To avoid this, resistance monitoring needs to be intensified and an enhancement of the diagnostic tool box for the easy detection of different kdr-variants (including in particular the super-kdr haplotype) and for subsequent functional studies on the resistance phenotype of detected variants, is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1