{"title":"转录因子 MYC2 通过激活银杏叶中 GbGGPPS 的表达积极调控萜烯三内酯的生物合成","authors":"Jiarui Zheng, Yongling Liao, Jiabao Ye, Feng Xu, Weiwei Zhang, Xian Zhou, Lina Wang, Xiao He, Zhengyan Cao, Yuwei Yi, Yansheng Xue, Qiangwen Chen, Jiaxing Sun","doi":"10.1093/hr/uhae228","DOIUrl":null,"url":null,"abstract":"Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. GbMYC2s expression was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase reporter assay, and DAP-seq, and they achieved regulation of GbGGPPS by binding to G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"39 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcription factor MYC2 positively regulates terpene trilactone biosynthesis through activating GbGGPPS expression in Ginkgo biloba\",\"authors\":\"Jiarui Zheng, Yongling Liao, Jiabao Ye, Feng Xu, Weiwei Zhang, Xian Zhou, Lina Wang, Xiao He, Zhengyan Cao, Yuwei Yi, Yansheng Xue, Qiangwen Chen, Jiaxing Sun\",\"doi\":\"10.1093/hr/uhae228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. GbMYC2s expression was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase reporter assay, and DAP-seq, and they achieved regulation of GbGGPPS by binding to G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae228\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae228","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The transcription factor MYC2 positively regulates terpene trilactone biosynthesis through activating GbGGPPS expression in Ginkgo biloba
Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. GbMYC2s expression was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase reporter assay, and DAP-seq, and they achieved regulation of GbGGPPS by binding to G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.