基于重新定义的四阶均匀双曲多项式 B-样条曲线配准法求解平流扩散方程

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-09 DOI:10.1016/j.amc.2024.128992
Mansi S. Palav, Vikas H. Pradhan
{"title":"基于重新定义的四阶均匀双曲多项式 B-样条曲线配准法求解平流扩散方程","authors":"Mansi S. Palav,&nbsp;Vikas H. Pradhan","doi":"10.1016/j.amc.2024.128992","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, uniform hyperbolic polynomial (UHP) B-spline based collocation method is proposed for solving advection-diffusion equation (ADE) numerically. The Von-Neumann's criterion is used to perform stability analysis. It reveals that the proposed scheme is unconditionally stable. The proposed method is implemented on various examples and numerical outcomes which are reported in table. The numerical outcomes are compared with the other methods available in standard literature. The rate of convergence is also calculated numerically which is found to be closed to 2. The numerical investigation reveals that the developed scheme is efficient, accurate and easy to implement. The proposed method is also applied to solve two-dimensional and three-dimensional ADE to demonstrate the efficiency of proposed scheme.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0096300324004533/pdfft?md5=7a2b3a6a29e0809e9c99a99b5cac312f&pid=1-s2.0-S0096300324004533-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Redefined fourth order uniform hyperbolic polynomial B-splines based collocation method for solving advection-diffusion equation\",\"authors\":\"Mansi S. Palav,&nbsp;Vikas H. Pradhan\",\"doi\":\"10.1016/j.amc.2024.128992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, uniform hyperbolic polynomial (UHP) B-spline based collocation method is proposed for solving advection-diffusion equation (ADE) numerically. The Von-Neumann's criterion is used to perform stability analysis. It reveals that the proposed scheme is unconditionally stable. The proposed method is implemented on various examples and numerical outcomes which are reported in table. The numerical outcomes are compared with the other methods available in standard literature. The rate of convergence is also calculated numerically which is found to be closed to 2. The numerical investigation reveals that the developed scheme is efficient, accurate and easy to implement. The proposed method is also applied to solve two-dimensional and three-dimensional ADE to demonstrate the efficiency of proposed scheme.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004533/pdfft?md5=7a2b3a6a29e0809e9c99a99b5cac312f&pid=1-s2.0-S0096300324004533-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004533\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004533","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于均匀双曲多项式(UHP)B-样条曲线的配位法,用于数值求解平流扩散方程(ADE)。本文采用 Von-Neumann 准则进行稳定性分析。结果表明,所提出的方案是无条件稳定的。表中列出了所提方法在各种实例中的应用和数值结果。数值结果与标准文献中的其他方法进行了比较。数值研究表明,所提出的方案高效、精确且易于实施。所提出的方法还被用于求解二维和三维 ADE,以证明所提出方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Redefined fourth order uniform hyperbolic polynomial B-splines based collocation method for solving advection-diffusion equation

In the present paper, uniform hyperbolic polynomial (UHP) B-spline based collocation method is proposed for solving advection-diffusion equation (ADE) numerically. The Von-Neumann's criterion is used to perform stability analysis. It reveals that the proposed scheme is unconditionally stable. The proposed method is implemented on various examples and numerical outcomes which are reported in table. The numerical outcomes are compared with the other methods available in standard literature. The rate of convergence is also calculated numerically which is found to be closed to 2. The numerical investigation reveals that the developed scheme is efficient, accurate and easy to implement. The proposed method is also applied to solve two-dimensional and three-dimensional ADE to demonstrate the efficiency of proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1