Elena Govi , Davide Sapienza , Samuele Toscani , Ivan Cotti , Giorgia Franchini , Marko Bertogna
{"title":"应对工业取放挑战:基于深度学习的 6 自由度姿态估计解决方案","authors":"Elena Govi , Davide Sapienza , Samuele Toscani , Ivan Cotti , Giorgia Franchini , Marko Bertogna","doi":"10.1016/j.compind.2024.104130","DOIUrl":null,"url":null,"abstract":"<div><p>Object picking is a fundamental, long-lasting, and yet unsolved problem in industrial applications. To complete it, 6 Degrees-of-Freedom pose estimation can be crucial. This task, easy for humans, is a challenge for machines as it involves multiple intelligent processes (for example object detection, recognition, pose prediction). Pose estimation has recently made huge steps forward, due to the advent of Deep Learning. However, in real-world applications it is not trivial to compute it: each use-case needs an annotated dataset and a model robust enough to face its specific challenges. In this paper, we present a comprehensive investigation focused on a specific use-case: the picking of four industrial objects by a collaborative robot’s arm, addressing challenges related to reflective textures and pose ambiguities of heterogeneous shapes. Thus, Artificial Intelligence is crucial in this process, utilizing Convolutional Neural Networks to discern an object’s pose by extracting hierarchical features from a single image. In detail, we propose a new synthetic dataset of industrial objects and a fine-tuning method to close the sim-to-real domain gap. In addition, we improved an existing pipeline for pose estimation and introduced a new version of an existing method, based on Convolutional Neural Networks. Finally, extensive experiments were conducted with a Universal Robot UR5e. Results show our strategy achieves good performances with an average successful picking rate of 75% on these new objects. Considering the lack of available datasets for pose estimation, coupled with the significant time and labor required for annotating new images, we contribute to the scientific community by providing a comprehensive dataset, and the associated generation and estimation pipelines.<span><span><sup>1</sup></span></span></p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"161 ","pages":"Article 104130"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361524000587/pdfft?md5=5784c120c97e9ce7f729edd31cc45d22&pid=1-s2.0-S0166361524000587-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Addressing challenges in industrial pick and place: A deep learning-based 6 Degrees-of-Freedom pose estimation solution\",\"authors\":\"Elena Govi , Davide Sapienza , Samuele Toscani , Ivan Cotti , Giorgia Franchini , Marko Bertogna\",\"doi\":\"10.1016/j.compind.2024.104130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Object picking is a fundamental, long-lasting, and yet unsolved problem in industrial applications. To complete it, 6 Degrees-of-Freedom pose estimation can be crucial. This task, easy for humans, is a challenge for machines as it involves multiple intelligent processes (for example object detection, recognition, pose prediction). Pose estimation has recently made huge steps forward, due to the advent of Deep Learning. However, in real-world applications it is not trivial to compute it: each use-case needs an annotated dataset and a model robust enough to face its specific challenges. In this paper, we present a comprehensive investigation focused on a specific use-case: the picking of four industrial objects by a collaborative robot’s arm, addressing challenges related to reflective textures and pose ambiguities of heterogeneous shapes. Thus, Artificial Intelligence is crucial in this process, utilizing Convolutional Neural Networks to discern an object’s pose by extracting hierarchical features from a single image. In detail, we propose a new synthetic dataset of industrial objects and a fine-tuning method to close the sim-to-real domain gap. In addition, we improved an existing pipeline for pose estimation and introduced a new version of an existing method, based on Convolutional Neural Networks. Finally, extensive experiments were conducted with a Universal Robot UR5e. Results show our strategy achieves good performances with an average successful picking rate of 75% on these new objects. Considering the lack of available datasets for pose estimation, coupled with the significant time and labor required for annotating new images, we contribute to the scientific community by providing a comprehensive dataset, and the associated generation and estimation pipelines.<span><span><sup>1</sup></span></span></p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"161 \",\"pages\":\"Article 104130\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000587/pdfft?md5=5784c120c97e9ce7f729edd31cc45d22&pid=1-s2.0-S0166361524000587-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000587\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000587","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Addressing challenges in industrial pick and place: A deep learning-based 6 Degrees-of-Freedom pose estimation solution
Object picking is a fundamental, long-lasting, and yet unsolved problem in industrial applications. To complete it, 6 Degrees-of-Freedom pose estimation can be crucial. This task, easy for humans, is a challenge for machines as it involves multiple intelligent processes (for example object detection, recognition, pose prediction). Pose estimation has recently made huge steps forward, due to the advent of Deep Learning. However, in real-world applications it is not trivial to compute it: each use-case needs an annotated dataset and a model robust enough to face its specific challenges. In this paper, we present a comprehensive investigation focused on a specific use-case: the picking of four industrial objects by a collaborative robot’s arm, addressing challenges related to reflective textures and pose ambiguities of heterogeneous shapes. Thus, Artificial Intelligence is crucial in this process, utilizing Convolutional Neural Networks to discern an object’s pose by extracting hierarchical features from a single image. In detail, we propose a new synthetic dataset of industrial objects and a fine-tuning method to close the sim-to-real domain gap. In addition, we improved an existing pipeline for pose estimation and introduced a new version of an existing method, based on Convolutional Neural Networks. Finally, extensive experiments were conducted with a Universal Robot UR5e. Results show our strategy achieves good performances with an average successful picking rate of 75% on these new objects. Considering the lack of available datasets for pose estimation, coupled with the significant time and labor required for annotating new images, we contribute to the scientific community by providing a comprehensive dataset, and the associated generation and estimation pipelines.1
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.