用于单相流的奇异值分解和异质孔隙网络中的集群识别

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES Advances in Water Resources Pub Date : 2024-07-31 DOI:10.1016/j.advwatres.2024.104779
Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz
{"title":"用于单相流的奇异值分解和异质孔隙网络中的集群识别","authors":"Ilan Ben-Noah ,&nbsp;Juan J. Hidalgo ,&nbsp;Marco Dentz","doi":"10.1016/j.advwatres.2024.104779","DOIUrl":null,"url":null,"abstract":"<div><p>Pore networks play a key role in understanding and quantifying flow and transport processes in complex porous media. Realistic pore-spaces may be characterized by singular regions, that is, isolated subnetworks that do not connect inlet and outlet, resulting from unconnected porosity or multiphase configurations. The robust identification of these features is critical for the characterization of network topology and for the solution of the set of linear equations of flow and transport. We propose a robust method based on singular value decomposition to solve for network flow and locate isolated subnetworks simultaneously. The performance of the method is demonstrated for pore networks of different complexity.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"192 ","pages":"Article 104779"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular value decomposition for single-phase flow and cluster identification in heterogeneous pore networks\",\"authors\":\"Ilan Ben-Noah ,&nbsp;Juan J. Hidalgo ,&nbsp;Marco Dentz\",\"doi\":\"10.1016/j.advwatres.2024.104779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pore networks play a key role in understanding and quantifying flow and transport processes in complex porous media. Realistic pore-spaces may be characterized by singular regions, that is, isolated subnetworks that do not connect inlet and outlet, resulting from unconnected porosity or multiphase configurations. The robust identification of these features is critical for the characterization of network topology and for the solution of the set of linear equations of flow and transport. We propose a robust method based on singular value decomposition to solve for network flow and locate isolated subnetworks simultaneously. The performance of the method is demonstrated for pore networks of different complexity.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"192 \",\"pages\":\"Article 104779\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824001660\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001660","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

孔隙网络在理解和量化复杂多孔介质中的流动和传输过程中起着关键作用。现实中的孔隙空间可能存在奇异区域,即由于孔隙率不相连或多相配置造成的进出口不相连的孤立子网络。这些特征的稳健识别对于网络拓扑的表征以及流动和传输线性方程组的求解至关重要。我们提出了一种基于奇异值分解的稳健方法,可同时求解网络流动和定位孤立子网络。针对不同复杂程度的孔隙网络,我们展示了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Singular value decomposition for single-phase flow and cluster identification in heterogeneous pore networks

Pore networks play a key role in understanding and quantifying flow and transport processes in complex porous media. Realistic pore-spaces may be characterized by singular regions, that is, isolated subnetworks that do not connect inlet and outlet, resulting from unconnected porosity or multiphase configurations. The robust identification of these features is critical for the characterization of network topology and for the solution of the set of linear equations of flow and transport. We propose a robust method based on singular value decomposition to solve for network flow and locate isolated subnetworks simultaneously. The performance of the method is demonstrated for pore networks of different complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
期刊最新文献
A training trajectory random walk model for upscaling colloid transport under favorable and unfavorable conditions On the modeling of the foam dynamics in heterogeneous porous media Corrigendum to “Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks” [Advances in Water Resources Volume 177 (2023), 104445] Investigating solute transport and reaction using a mechanistically coupled geochemical and geophysical modeling approach A computationally efficient hybrid neural network architecture for porous media: Integrating convolutional and graph neural networks for improved property predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1