基于数据驱动和物理输出的工具磨损监测方法

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Robotics and Computer-integrated Manufacturing Pub Date : 2024-08-05 DOI:10.1016/j.rcim.2024.102820
Yiyuan Qin , Xianli Liu , Caixu Yue , Lihui Wang , Hao Gu
{"title":"基于数据驱动和物理输出的工具磨损监测方法","authors":"Yiyuan Qin ,&nbsp;Xianli Liu ,&nbsp;Caixu Yue ,&nbsp;Lihui Wang ,&nbsp;Hao Gu","doi":"10.1016/j.rcim.2024.102820","DOIUrl":null,"url":null,"abstract":"<div><p>In the process of metal cutting, realizing effective monitoring of tool wear is of great significance to ensure the quality of parts machining. To address the tool wear monitoring (TWM) problem, a tool wear monitoring method based on data-driven and physical output is proposed. The method divides two Physical models (PM) into multiple stages according to the tool wear in real machining scenarios, making the coefficients of PM variable. Meanwhile, by analyzing the monitoring capabilities of different PMs at each stage and fusing them, the PM's ability to deal with complex nonlinear relationships, which is difficult to handle, is improved, and the flexibility of the model is improved; The pre-processed signal data features were extracted, and the original features were fused and downscaled using Stacked Sparse Auto-Encoder (SSAE) networker to build a data-driven model (DDM). At the same time, the DDM is used as a guidance layer to guide the fused PM for the prediction of wear amount at each stage of the tool, which enhances the interpretability of the monitoring model. The experimental results show that the proposed method can realize the accurate monitoring of tool wear, which has a certain reference value for the flexible tool change in the actual metal-cutting process.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102820"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tool wear monitoring method based on data-driven and physical output\",\"authors\":\"Yiyuan Qin ,&nbsp;Xianli Liu ,&nbsp;Caixu Yue ,&nbsp;Lihui Wang ,&nbsp;Hao Gu\",\"doi\":\"10.1016/j.rcim.2024.102820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the process of metal cutting, realizing effective monitoring of tool wear is of great significance to ensure the quality of parts machining. To address the tool wear monitoring (TWM) problem, a tool wear monitoring method based on data-driven and physical output is proposed. The method divides two Physical models (PM) into multiple stages according to the tool wear in real machining scenarios, making the coefficients of PM variable. Meanwhile, by analyzing the monitoring capabilities of different PMs at each stage and fusing them, the PM's ability to deal with complex nonlinear relationships, which is difficult to handle, is improved, and the flexibility of the model is improved; The pre-processed signal data features were extracted, and the original features were fused and downscaled using Stacked Sparse Auto-Encoder (SSAE) networker to build a data-driven model (DDM). At the same time, the DDM is used as a guidance layer to guide the fused PM for the prediction of wear amount at each stage of the tool, which enhances the interpretability of the monitoring model. The experimental results show that the proposed method can realize the accurate monitoring of tool wear, which has a certain reference value for the flexible tool change in the actual metal-cutting process.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"91 \",\"pages\":\"Article 102820\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0736584524001078\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001078","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在金属切削过程中,实现对刀具磨损的有效监控对确保零件加工质量具有重要意义。针对刀具磨损监测(TWM)问题,提出了一种基于数据驱动和物理输出的刀具磨损监测方法。该方法根据实际加工场景中的刀具磨损情况,将两个物理模型(PM)分为多个阶段,使 PM 的系数可变。同时,通过分析各阶段不同 PM 的监测能力并将其融合,提高了 PM 处理难以处理的复杂非线性关系的能力,提高了模型的灵活性;提取预处理后的信号数据特征,并使用堆叠稀疏自动编码器(SSAE)网络器对原始特征进行融合和降维处理,建立数据驱动模型(DDM)。同时,将 DDM 作为指导层,引导融合 PM 预测刀具各阶段的磨损量,从而增强了监测模型的可解释性。实验结果表明,所提出的方法可以实现对刀具磨损的精确监测,对实际金属切削过程中的柔性换刀具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tool wear monitoring method based on data-driven and physical output

In the process of metal cutting, realizing effective monitoring of tool wear is of great significance to ensure the quality of parts machining. To address the tool wear monitoring (TWM) problem, a tool wear monitoring method based on data-driven and physical output is proposed. The method divides two Physical models (PM) into multiple stages according to the tool wear in real machining scenarios, making the coefficients of PM variable. Meanwhile, by analyzing the monitoring capabilities of different PMs at each stage and fusing them, the PM's ability to deal with complex nonlinear relationships, which is difficult to handle, is improved, and the flexibility of the model is improved; The pre-processed signal data features were extracted, and the original features were fused and downscaled using Stacked Sparse Auto-Encoder (SSAE) networker to build a data-driven model (DDM). At the same time, the DDM is used as a guidance layer to guide the fused PM for the prediction of wear amount at each stage of the tool, which enhances the interpretability of the monitoring model. The experimental results show that the proposed method can realize the accurate monitoring of tool wear, which has a certain reference value for the flexible tool change in the actual metal-cutting process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Computer-integrated Manufacturing
Robotics and Computer-integrated Manufacturing 工程技术-工程:制造
CiteScore
24.10
自引率
13.50%
发文量
160
审稿时长
50 days
期刊介绍: The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.
期刊最新文献
Editorial Board Efficient tool path planning method of ball-end milling for high quality manufacturing A safety posture field framework for mobile manipulators based on human–robot interaction trend and platform-arm coupling motion Processing accuracy improvement of robotic ball-end milling by simultaneously optimizing tool orientation and robotic redundancy Knowledge extraction for additive manufacturing process via named entity recognition with LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1