Wenchan Deng , Chundan Ye , Wei Wang , Rongrong Huang , Cheng Guo , Yuanjiang Pan , Cuirong Sun
{"title":"对人体尿液中手性氨基酸的液相色谱-质谱联用分析揭示了作为结直肠癌潜在生物标记物的 D-氨基酸。","authors":"Wenchan Deng , Chundan Ye , Wei Wang , Rongrong Huang , Cheng Guo , Yuanjiang Pan , Cuirong Sun","doi":"10.1016/j.jchromb.2024.124270","DOIUrl":null,"url":null,"abstract":"<div><p>Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1245 ","pages":"Article 124270"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LC-MS analysis of chiral amino acids in human urine reveals D-amino acids as potential biomarkers for colorectal cancer\",\"authors\":\"Wenchan Deng , Chundan Ye , Wei Wang , Rongrong Huang , Cheng Guo , Yuanjiang Pan , Cuirong Sun\",\"doi\":\"10.1016/j.jchromb.2024.124270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.</p></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1245 \",\"pages\":\"Article 124270\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023224002794\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224002794","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
LC-MS analysis of chiral amino acids in human urine reveals D-amino acids as potential biomarkers for colorectal cancer
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract. Changes in amino acid metabolites have been implicated in tumorigenesis and disease progression. Biomarkers on the basis of chiral amino acids, especially D-amino acids, have not been established for early diagnosis of CRC. Quantification of chiral amino acids, especially very low concentrations of endogenous D-amino acids, is technically challenging. We report here the quantification of L- and D-amino acids in urine samples collected from 115 CRC patients and 155 healthy volunteers, using an improved method. The method of chiral labeling, liquid chromatography, and tandem mass spectrometry enabled separation and detection of 28 amino acids (14 L-amino acids, 13 D-amino acids and Gly). Orthogonal partial least squares discriminant analysis identified 14 targeted variables among these chiral amino acids that distinguished the CRC from the healthy controls. Binary logistic regression analysis revealed that D-α-aminobutyric acid (D-AABA), L-alanine (L-Ala), D-alanine (D-Ala), D-glutamine (D-Gln) and D-serine (D-Ser) could be potential biomarkers for CRC. A receiver operating characteristic curve analysis of combined multi-variables contributed to an area under the curve (AUC) of 0.995 with 98.3 % sensitivity and 96.8 % specificity. A model constructed with D-AABA, D-Ala, D-Gln, and D-Ser achieved an AUC of 0.988, indicating important contributions of D-amino acids to the association with CRC. Further analysis also demonstrated that the metabolic aberration was associated with age and the development of CRC, D-methionine (D-Met) was decreased in CRC patients with age over 50, and D/L-Gln in patients at stage IV was higher than patients at stage I. This study provides the signature of D-amino acids in urine samples and offers a promising strategy for developing non-invasive diagnosis of CRC.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.