多层网络探索定义的早衰疾病分子图谱

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-09 DOI:10.1002/adbi.202400134
Cécile Beust, Alberto Valdeolivas, Anthony Baptista, Galadriel Brière, Nicolas Lévy, Ozan Ozisik, Anaïs Baudot
{"title":"多层网络探索定义的早衰疾病分子图谱","authors":"Cécile Beust,&nbsp;Alberto Valdeolivas,&nbsp;Anthony Baptista,&nbsp;Galadriel Brière,&nbsp;Nicolas Lévy,&nbsp;Ozan Ozisik,&nbsp;Anaïs Baudot","doi":"10.1002/adbi.202400134","DOIUrl":null,"url":null,"abstract":"<p>Premature Aging (PA) diseases are rare genetic disorders that mimic some aspects of physiological aging at an early age. Various causative genes of PA diseases have been identified in recent years, providing insights into some dysfunctional cellular processes. However, the identification of PA genes also revealed significant genetic heterogeneity and highlighted the gaps in this understanding of PA-associated molecular mechanisms. Furthermore, many patients remain undiagnosed. Overall, the current lack of knowledge about PA diseases hinders the development of effective diagnosis and therapies and poses significant challenges to improving patient care.</p><p>Here, a network-based approach to systematically unravel the cellular functions disrupted in PA diseases is presented. Leveraging a network community identification algorithm, it is delved into a vast multilayer network of biological interactions to extract the communities of 67 PA diseases from their 132 associated genes. It is found that these communities can be grouped into six distinct clusters, each reflecting specific cellular functions: DNA repair, cell cycle, transcription regulation, inflammation, cell communication, and vesicle-mediated transport. That these clusters collectively represent the landscape of the molecular mechanisms that are perturbed in PA diseases, providing a framework for better understanding their pathogenesis is proposed. Intriguingly, most clusters also exhibited a significant enrichment in genes associated with physiological aging, suggesting a potential overlap between the molecular underpinnings of PA diseases and natural aging.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400134","citationCount":"0","resultStr":"{\"title\":\"The Molecular Landscape of Premature Aging Diseases Defined by Multilayer Network Exploration\",\"authors\":\"Cécile Beust,&nbsp;Alberto Valdeolivas,&nbsp;Anthony Baptista,&nbsp;Galadriel Brière,&nbsp;Nicolas Lévy,&nbsp;Ozan Ozisik,&nbsp;Anaïs Baudot\",\"doi\":\"10.1002/adbi.202400134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Premature Aging (PA) diseases are rare genetic disorders that mimic some aspects of physiological aging at an early age. Various causative genes of PA diseases have been identified in recent years, providing insights into some dysfunctional cellular processes. However, the identification of PA genes also revealed significant genetic heterogeneity and highlighted the gaps in this understanding of PA-associated molecular mechanisms. Furthermore, many patients remain undiagnosed. Overall, the current lack of knowledge about PA diseases hinders the development of effective diagnosis and therapies and poses significant challenges to improving patient care.</p><p>Here, a network-based approach to systematically unravel the cellular functions disrupted in PA diseases is presented. Leveraging a network community identification algorithm, it is delved into a vast multilayer network of biological interactions to extract the communities of 67 PA diseases from their 132 associated genes. It is found that these communities can be grouped into six distinct clusters, each reflecting specific cellular functions: DNA repair, cell cycle, transcription regulation, inflammation, cell communication, and vesicle-mediated transport. That these clusters collectively represent the landscape of the molecular mechanisms that are perturbed in PA diseases, providing a framework for better understanding their pathogenesis is proposed. Intriguingly, most clusters also exhibited a significant enrichment in genes associated with physiological aging, suggesting a potential overlap between the molecular underpinnings of PA diseases and natural aging.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202400134\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202400134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

早衰(PA)疾病是一种罕见的遗传性疾病,会在幼年时模拟生理衰老的某些方面。近年来发现了多种 PA 疾病的致病基因,为了解某些功能失调的细胞过程提供了线索。然而,PA 基因的鉴定也揭示了显著的遗传异质性,凸显了人们对 PA 相关分子机制认识的不足。此外,许多患者仍未得到诊断。总之,目前对 PA 疾病缺乏了解阻碍了有效诊断和疗法的开发,并对改善患者护理提出了重大挑战。本文介绍了一种基于网络的方法,以系统地揭示 PA 疾病所破坏的细胞功能。利用网络群落识别算法,深入研究了庞大的多层生物相互作用网络,从 67 种 PA 疾病的 132 个相关基因中提取出其群落。研究发现,这些群落可分为六个不同的群组,每个群组都反映了特定的细胞功能:DNA修复、细胞周期、转录调控、炎症、细胞通讯和囊泡介导的转运。这些群组共同代表了 PA 疾病中受到干扰的分子机制的全貌,为更好地理解其发病机制提供了一个框架。耐人寻味的是,大多数集群还表现出与生理衰老相关基因的显著富集,这表明 PA 疾病的分子基础与自然衰老之间存在潜在的重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Molecular Landscape of Premature Aging Diseases Defined by Multilayer Network Exploration

Premature Aging (PA) diseases are rare genetic disorders that mimic some aspects of physiological aging at an early age. Various causative genes of PA diseases have been identified in recent years, providing insights into some dysfunctional cellular processes. However, the identification of PA genes also revealed significant genetic heterogeneity and highlighted the gaps in this understanding of PA-associated molecular mechanisms. Furthermore, many patients remain undiagnosed. Overall, the current lack of knowledge about PA diseases hinders the development of effective diagnosis and therapies and poses significant challenges to improving patient care.

Here, a network-based approach to systematically unravel the cellular functions disrupted in PA diseases is presented. Leveraging a network community identification algorithm, it is delved into a vast multilayer network of biological interactions to extract the communities of 67 PA diseases from their 132 associated genes. It is found that these communities can be grouped into six distinct clusters, each reflecting specific cellular functions: DNA repair, cell cycle, transcription regulation, inflammation, cell communication, and vesicle-mediated transport. That these clusters collectively represent the landscape of the molecular mechanisms that are perturbed in PA diseases, providing a framework for better understanding their pathogenesis is proposed. Intriguingly, most clusters also exhibited a significant enrichment in genes associated with physiological aging, suggesting a potential overlap between the molecular underpinnings of PA diseases and natural aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1