Sydnee T Sicherer, Noor Haque, Yash Parikh, Jonathan M Grasman
{"title":"用于骨骼肌组织再生的组织构建物中诱导排列整齐的肌纤维的现有方法。","authors":"Sydnee T Sicherer, Noor Haque, Yash Parikh, Jonathan M Grasman","doi":"10.1089/wound.2024.0111","DOIUrl":null,"url":null,"abstract":"<p><p><b>Significance:</b> Volumetric muscle loss (VML) results in the loss of large amounts of tissue that inhibits muscle regeneration. Existing therapies, such as autologous muscle transfer and physical therapy, are incapable of returning full function and force production to injured muscle. <b>Recent Advances:</b> Skeletal muscle tissue constructs may provide an alternative to existing therapies currently used to treat VML. Unlike autologous muscle transplants, muscle constructs can be cultured <i>in vitro</i> and are not reliant on intact muscle tissue. Skeletal muscle constructs can be generated from small muscle biopsies and could be used to generate skeletal muscle tissue constructs to replace injured tissues. <b>Critical Issues:</b> To serve as effective therapies, muscle constructs must be capable of generating contractile forces that can assist the function of host skeletal muscle. The contractile force of native muscle arises in part as a consequence of the highly aligned, bundled architecture of myofibers. Attempts to induce similar alignment include applications of tension/strain across hydrogels, inducing aligned architectures within scaffolds, casting tissues in straited molds, and 3D printing. While all these methods have demonstrated efficacy toward inducing myofiber alignment, the extent of myofiber alignment, tissue formation, and force production varies. This manusript critically reviews the advantages and limitations of these methods and specifically discusses their ability to impart mechanical and architectural cues to induce alignment within tissue constructs. <b>Future Directions:</b> As tissue-synthesizing techniques continue to improve, muscle constructs must include more cell types than simply myoblasts, such as the addition of neuronal and endothelial cells. Higher-level tissue organization is critical to the success of these constructs. Many of these technologies have yet to be implanted into host tissue to understand engraftment and how they can contribute to traumatic injury, and as such continued collaboration between surgeons and tissue engineers is necessary to ultimately result in clinical translation.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Methodologies for Inducing Aligned Myofibers in Tissue Constructs for Skeletal Muscle Tissue Regeneration.\",\"authors\":\"Sydnee T Sicherer, Noor Haque, Yash Parikh, Jonathan M Grasman\",\"doi\":\"10.1089/wound.2024.0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Significance:</b> Volumetric muscle loss (VML) results in the loss of large amounts of tissue that inhibits muscle regeneration. Existing therapies, such as autologous muscle transfer and physical therapy, are incapable of returning full function and force production to injured muscle. <b>Recent Advances:</b> Skeletal muscle tissue constructs may provide an alternative to existing therapies currently used to treat VML. Unlike autologous muscle transplants, muscle constructs can be cultured <i>in vitro</i> and are not reliant on intact muscle tissue. Skeletal muscle constructs can be generated from small muscle biopsies and could be used to generate skeletal muscle tissue constructs to replace injured tissues. <b>Critical Issues:</b> To serve as effective therapies, muscle constructs must be capable of generating contractile forces that can assist the function of host skeletal muscle. The contractile force of native muscle arises in part as a consequence of the highly aligned, bundled architecture of myofibers. Attempts to induce similar alignment include applications of tension/strain across hydrogels, inducing aligned architectures within scaffolds, casting tissues in straited molds, and 3D printing. While all these methods have demonstrated efficacy toward inducing myofiber alignment, the extent of myofiber alignment, tissue formation, and force production varies. This manusript critically reviews the advantages and limitations of these methods and specifically discusses their ability to impart mechanical and architectural cues to induce alignment within tissue constructs. <b>Future Directions:</b> As tissue-synthesizing techniques continue to improve, muscle constructs must include more cell types than simply myoblasts, such as the addition of neuronal and endothelial cells. Higher-level tissue organization is critical to the success of these constructs. Many of these technologies have yet to be implanted into host tissue to understand engraftment and how they can contribute to traumatic injury, and as such continued collaboration between surgeons and tissue engineers is necessary to ultimately result in clinical translation.</p>\",\"PeriodicalId\":7413,\"journal\":{\"name\":\"Advances in wound care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in wound care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/wound.2024.0111\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2024.0111","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Current Methodologies for Inducing Aligned Myofibers in Tissue Constructs for Skeletal Muscle Tissue Regeneration.
Significance: Volumetric muscle loss (VML) results in the loss of large amounts of tissue that inhibits muscle regeneration. Existing therapies, such as autologous muscle transfer and physical therapy, are incapable of returning full function and force production to injured muscle. Recent Advances: Skeletal muscle tissue constructs may provide an alternative to existing therapies currently used to treat VML. Unlike autologous muscle transplants, muscle constructs can be cultured in vitro and are not reliant on intact muscle tissue. Skeletal muscle constructs can be generated from small muscle biopsies and could be used to generate skeletal muscle tissue constructs to replace injured tissues. Critical Issues: To serve as effective therapies, muscle constructs must be capable of generating contractile forces that can assist the function of host skeletal muscle. The contractile force of native muscle arises in part as a consequence of the highly aligned, bundled architecture of myofibers. Attempts to induce similar alignment include applications of tension/strain across hydrogels, inducing aligned architectures within scaffolds, casting tissues in straited molds, and 3D printing. While all these methods have demonstrated efficacy toward inducing myofiber alignment, the extent of myofiber alignment, tissue formation, and force production varies. This manusript critically reviews the advantages and limitations of these methods and specifically discusses their ability to impart mechanical and architectural cues to induce alignment within tissue constructs. Future Directions: As tissue-synthesizing techniques continue to improve, muscle constructs must include more cell types than simply myoblasts, such as the addition of neuronal and endothelial cells. Higher-level tissue organization is critical to the success of these constructs. Many of these technologies have yet to be implanted into host tissue to understand engraftment and how they can contribute to traumatic injury, and as such continued collaboration between surgeons and tissue engineers is necessary to ultimately result in clinical translation.
期刊介绍:
Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds.
Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments.
Advances in Wound Care coverage includes:
Skin bioengineering,
Skin and tissue regeneration,
Acute, chronic, and complex wounds,
Dressings,
Anti-scar strategies,
Inflammation,
Burns and healing,
Biofilm,
Oxygen and angiogenesis,
Critical limb ischemia,
Military wound care,
New devices and technologies.