{"title":"一次摄入后,毛发中的suvorexant和lemborexant及其分布情况。","authors":"Atsushi Nitta, Noriaki Shima, Hiroe Kamata, Misato Wada, Kengo Matsumoto, Hidenao Kakehashi, Shihoko Nakano-Fujii, Shuntaro Matsuta, Tooru Kamata, Munehiro Katagi, Takako Sato, Hiroshi Nishioka","doi":"10.1007/s11419-024-00700-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study examined the applicability of hair analysis as an approach to identify suvorexant (SUV) and lemborexant (LEM) intake by analyzing black hair specimens collected from study participants after a single oral administration.</p><p><strong>Methods: </strong>Hair specimens were collected form participants who took a single dose of 10 mg SUV or 5 mg LEM. Identification of the dual orexin receptor antagonists (DORAs) and their metabolites was performed by liquid chromatography-tandem mass spectrometry. Reference standards of S-M9 and L-M4, the metabolites of SUV and LEM, respectively, were synthesized in our laboratory. Sectional analysis of 1-mm segments of the single-hair strands was also performed to investigate the incorporation behavior of the drugs into hair.</p><p><strong>Results: </strong>Unchanged SUV and LEM, and their metabolites S-M9 and L-M4 were detected even in the single-hair specimens. Results of the segmental hair analysis showed predominant incorporation of the drugs into hair through the hair bulb region rather than through the upper dermis zone of the hair root. The drug concentrations in the hair specimens, collected about 1 month after intake, were 0.033-0.037 pg/hair strand (0.17-0.19 pg/mg) for SUV and 0.054-0.28 pg/hair strand (0.28-1.5 pg/mg) for LEM. The calculated distribution ratios of the DORAs into hair to the oral doses were much lower than those of benzodiazepines and zolpidem reported in a previous study.</p><p><strong>Conclusions: </strong>This is the first report of the detection of the DORAs in hair. The incorporation behavior of the DORAs into hair revealed herein are crucial for proper interpretation of hair test results.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporation of suvorexant and lemborexant into hair and their distributions after a single intake.\",\"authors\":\"Atsushi Nitta, Noriaki Shima, Hiroe Kamata, Misato Wada, Kengo Matsumoto, Hidenao Kakehashi, Shihoko Nakano-Fujii, Shuntaro Matsuta, Tooru Kamata, Munehiro Katagi, Takako Sato, Hiroshi Nishioka\",\"doi\":\"10.1007/s11419-024-00700-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study examined the applicability of hair analysis as an approach to identify suvorexant (SUV) and lemborexant (LEM) intake by analyzing black hair specimens collected from study participants after a single oral administration.</p><p><strong>Methods: </strong>Hair specimens were collected form participants who took a single dose of 10 mg SUV or 5 mg LEM. Identification of the dual orexin receptor antagonists (DORAs) and their metabolites was performed by liquid chromatography-tandem mass spectrometry. Reference standards of S-M9 and L-M4, the metabolites of SUV and LEM, respectively, were synthesized in our laboratory. Sectional analysis of 1-mm segments of the single-hair strands was also performed to investigate the incorporation behavior of the drugs into hair.</p><p><strong>Results: </strong>Unchanged SUV and LEM, and their metabolites S-M9 and L-M4 were detected even in the single-hair specimens. Results of the segmental hair analysis showed predominant incorporation of the drugs into hair through the hair bulb region rather than through the upper dermis zone of the hair root. The drug concentrations in the hair specimens, collected about 1 month after intake, were 0.033-0.037 pg/hair strand (0.17-0.19 pg/mg) for SUV and 0.054-0.28 pg/hair strand (0.28-1.5 pg/mg) for LEM. The calculated distribution ratios of the DORAs into hair to the oral doses were much lower than those of benzodiazepines and zolpidem reported in a previous study.</p><p><strong>Conclusions: </strong>This is the first report of the detection of the DORAs in hair. The incorporation behavior of the DORAs into hair revealed herein are crucial for proper interpretation of hair test results.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-024-00700-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-024-00700-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Incorporation of suvorexant and lemborexant into hair and their distributions after a single intake.
Purpose: This study examined the applicability of hair analysis as an approach to identify suvorexant (SUV) and lemborexant (LEM) intake by analyzing black hair specimens collected from study participants after a single oral administration.
Methods: Hair specimens were collected form participants who took a single dose of 10 mg SUV or 5 mg LEM. Identification of the dual orexin receptor antagonists (DORAs) and their metabolites was performed by liquid chromatography-tandem mass spectrometry. Reference standards of S-M9 and L-M4, the metabolites of SUV and LEM, respectively, were synthesized in our laboratory. Sectional analysis of 1-mm segments of the single-hair strands was also performed to investigate the incorporation behavior of the drugs into hair.
Results: Unchanged SUV and LEM, and their metabolites S-M9 and L-M4 were detected even in the single-hair specimens. Results of the segmental hair analysis showed predominant incorporation of the drugs into hair through the hair bulb region rather than through the upper dermis zone of the hair root. The drug concentrations in the hair specimens, collected about 1 month after intake, were 0.033-0.037 pg/hair strand (0.17-0.19 pg/mg) for SUV and 0.054-0.28 pg/hair strand (0.28-1.5 pg/mg) for LEM. The calculated distribution ratios of the DORAs into hair to the oral doses were much lower than those of benzodiazepines and zolpidem reported in a previous study.
Conclusions: This is the first report of the detection of the DORAs in hair. The incorporation behavior of the DORAs into hair revealed herein are crucial for proper interpretation of hair test results.
期刊介绍:
The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published.
Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).