{"title":"新发现的激流鲶(Liobagrus geumgangensis)的完整线粒体基因组特征及其系统发育关系。","authors":"Seung-Woon Yun, Jong-Young Park","doi":"10.1007/s13258-024-01552-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A new Liobagrus fish was reported from the Korean Peninsula, but research on this taxon is lacking. Moreover, existing research on the mitogenome of the genus Liobagrus in Korea is very limited, and no studies have been conducted on structural characteristics of transfer RNA (tRNA) or gene order comparisons between taxa; instead, research has been restricted to basic phylogeny.</p><p><strong>Objective: </strong>The complete mitochondrial genome of Liobagrus geumgangensis was analyzed for the first time. We then aimed to reconstruct the phylogenetic relationships of the genus Liobagrus and estimate the divergence time of speciation events.</p><p><strong>Methods: </strong>We used a dissected fin clip from an adult of Liobagrus geumgangensis. Genomic DNA was extracted and analyzed with whole genome sequencing (WGS) and assembled by the NOVOPlasty method. The mitogenome sequence was annotated, and a genome map, tRNA structure, and phylogenetic tree were constructed using maximum likelihood analysis. In addition, divergence time was estimated.</p><p><strong>Results: </strong>The mitochondrial genome was 16,522 bp in length and comprised 37 genes. The overall base composition was 30.5% A, 25.5% T, 28.4% C, and 15.7% G. Most tRNAs exhibited the typical clover leaf shape, except trnS1. Phylogenetic analysis revealed that Liobagrus geumgangensis clustered within a clade with four other Liobagrus species exclusive to the southern region of the Korean Peninsula. Its divergence was estimated to have occurred during the late Miocene.</p><p><strong>Conclusion: </strong>Characteristics of Liobagrus geumgangensis mitogenome were consistent with those of other torrent catfish species. Time scale estimation revealed distinct groupings, with some distributed across mainland Asia and others in the southern region of the Korean Peninsula. Notably, the Korean Peninsula group was identified as its own lineage, comprising entirely endemic species.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"1123-1131"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the complete mitochondrial genome of a newly discovered torrent catfish, Liobagrus geumgangensis, and their phylogenetic relationships.\",\"authors\":\"Seung-Woon Yun, Jong-Young Park\",\"doi\":\"10.1007/s13258-024-01552-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A new Liobagrus fish was reported from the Korean Peninsula, but research on this taxon is lacking. Moreover, existing research on the mitogenome of the genus Liobagrus in Korea is very limited, and no studies have been conducted on structural characteristics of transfer RNA (tRNA) or gene order comparisons between taxa; instead, research has been restricted to basic phylogeny.</p><p><strong>Objective: </strong>The complete mitochondrial genome of Liobagrus geumgangensis was analyzed for the first time. We then aimed to reconstruct the phylogenetic relationships of the genus Liobagrus and estimate the divergence time of speciation events.</p><p><strong>Methods: </strong>We used a dissected fin clip from an adult of Liobagrus geumgangensis. Genomic DNA was extracted and analyzed with whole genome sequencing (WGS) and assembled by the NOVOPlasty method. The mitogenome sequence was annotated, and a genome map, tRNA structure, and phylogenetic tree were constructed using maximum likelihood analysis. In addition, divergence time was estimated.</p><p><strong>Results: </strong>The mitochondrial genome was 16,522 bp in length and comprised 37 genes. The overall base composition was 30.5% A, 25.5% T, 28.4% C, and 15.7% G. Most tRNAs exhibited the typical clover leaf shape, except trnS1. Phylogenetic analysis revealed that Liobagrus geumgangensis clustered within a clade with four other Liobagrus species exclusive to the southern region of the Korean Peninsula. Its divergence was estimated to have occurred during the late Miocene.</p><p><strong>Conclusion: </strong>Characteristics of Liobagrus geumgangensis mitogenome were consistent with those of other torrent catfish species. Time scale estimation revealed distinct groupings, with some distributed across mainland Asia and others in the southern region of the Korean Peninsula. Notably, the Korean Peninsula group was identified as its own lineage, comprising entirely endemic species.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"1123-1131\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01552-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01552-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of the complete mitochondrial genome of a newly discovered torrent catfish, Liobagrus geumgangensis, and their phylogenetic relationships.
Background: A new Liobagrus fish was reported from the Korean Peninsula, but research on this taxon is lacking. Moreover, existing research on the mitogenome of the genus Liobagrus in Korea is very limited, and no studies have been conducted on structural characteristics of transfer RNA (tRNA) or gene order comparisons between taxa; instead, research has been restricted to basic phylogeny.
Objective: The complete mitochondrial genome of Liobagrus geumgangensis was analyzed for the first time. We then aimed to reconstruct the phylogenetic relationships of the genus Liobagrus and estimate the divergence time of speciation events.
Methods: We used a dissected fin clip from an adult of Liobagrus geumgangensis. Genomic DNA was extracted and analyzed with whole genome sequencing (WGS) and assembled by the NOVOPlasty method. The mitogenome sequence was annotated, and a genome map, tRNA structure, and phylogenetic tree were constructed using maximum likelihood analysis. In addition, divergence time was estimated.
Results: The mitochondrial genome was 16,522 bp in length and comprised 37 genes. The overall base composition was 30.5% A, 25.5% T, 28.4% C, and 15.7% G. Most tRNAs exhibited the typical clover leaf shape, except trnS1. Phylogenetic analysis revealed that Liobagrus geumgangensis clustered within a clade with four other Liobagrus species exclusive to the southern region of the Korean Peninsula. Its divergence was estimated to have occurred during the late Miocene.
Conclusion: Characteristics of Liobagrus geumgangensis mitogenome were consistent with those of other torrent catfish species. Time scale estimation revealed distinct groupings, with some distributed across mainland Asia and others in the southern region of the Korean Peninsula. Notably, the Korean Peninsula group was identified as its own lineage, comprising entirely endemic species.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.