Hana Dobiašová , Valentina Jurkaš , Frederika Kabátová , Melissa Horvat , Florian Rudroff , Kvetoslava Vranková , Peter Both , Margit Winkler
{"title":"碳化法生产羟基戊酮。","authors":"Hana Dobiašová , Valentina Jurkaš , Frederika Kabátová , Melissa Horvat , Florian Rudroff , Kvetoslava Vranková , Peter Both , Margit Winkler","doi":"10.1016/j.jbiotec.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from <em>E. coli</em> (<em>Ec</em>PDH E1), namely <em>La</em>PDH from <em>Leclercia adecarboxylata</em>, <em>Cn</em>PDH from <em>Cupriavidus necator</em>, and <em>Tc</em>PDH from <em>Tanacetum cinerariifolium</em>, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. <em>Cn</em>PDH, for example, exhibits superior stability across different pH levels compared to <em>Ec</em>PDH E1. Both α-hydroxy pentanones can be produced with <em>Cn</em>PDH in satisfactory yields (74% and 59%, respectively).</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 161-169"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168165624002141/pdfft?md5=0dfec778895df0278f5046cc0fadada4&pid=1-s2.0-S0168165624002141-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Carboligation towards production of hydroxypentanones\",\"authors\":\"Hana Dobiašová , Valentina Jurkaš , Frederika Kabátová , Melissa Horvat , Florian Rudroff , Kvetoslava Vranková , Peter Both , Margit Winkler\",\"doi\":\"10.1016/j.jbiotec.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from <em>E. coli</em> (<em>Ec</em>PDH E1), namely <em>La</em>PDH from <em>Leclercia adecarboxylata</em>, <em>Cn</em>PDH from <em>Cupriavidus necator</em>, and <em>Tc</em>PDH from <em>Tanacetum cinerariifolium</em>, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. <em>Cn</em>PDH, for example, exhibits superior stability across different pH levels compared to <em>Ec</em>PDH E1. Both α-hydroxy pentanones can be produced with <em>Cn</em>PDH in satisfactory yields (74% and 59%, respectively).</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"393 \",\"pages\":\"Pages 161-169\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002141/pdfft?md5=0dfec778895df0278f5046cc0fadada4&pid=1-s2.0-S0168165624002141-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002141\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002141","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Carboligation towards production of hydroxypentanones
2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from E. coli (EcPDH E1), namely LaPDH from Leclercia adecarboxylata, CnPDH from Cupriavidus necator, and TcPDH from Tanacetum cinerariifolium, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. CnPDH, for example, exhibits superior stability across different pH levels compared to EcPDH E1. Both α-hydroxy pentanones can be produced with CnPDH in satisfactory yields (74% and 59%, respectively).
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.