Artur Szałata, Karin Hrovatin, Sören Becker, Alejandro Tejada-Lapuerta, Haotian Cui, Bo Wang, Fabian J. Theis
{"title":"单细胞全息研究中的转化器:回顾与新视角。","authors":"Artur Szałata, Karin Hrovatin, Sören Becker, Alejandro Tejada-Lapuerta, Haotian Cui, Bo Wang, Fabian J. Theis","doi":"10.1038/s41592-024-02353-z","DOIUrl":null,"url":null,"abstract":"Recent efforts to construct reference maps of cellular phenotypes have expanded the volume and diversity of single-cell omics data, providing an unprecedented resource for studying cell properties. Despite the availability of rich datasets and their continued growth, current single-cell models are unable to fully capitalize on the information they contain. Transformers have become the architecture of choice for foundation models in other domains owing to their ability to generalize to heterogeneous, large-scale datasets. Thus, the question arises of whether transformers could set off a similar shift in the field of single-cell modeling. Here we first describe the transformer architecture and its single-cell adaptations and then present a comprehensive review of the existing applications of transformers in single-cell analysis and critically discuss their future potential for single-cell biology. By studying limitations and technical challenges, we aim to provide a structured outlook for future research directions at the intersection of machine learning and single-cell biology. This Perspective presents a comprehensive and in-depth overview of computational models based on the deep learning architecture of transformers for single-cell omics analysis.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformers in single-cell omics: a review and new perspectives\",\"authors\":\"Artur Szałata, Karin Hrovatin, Sören Becker, Alejandro Tejada-Lapuerta, Haotian Cui, Bo Wang, Fabian J. Theis\",\"doi\":\"10.1038/s41592-024-02353-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent efforts to construct reference maps of cellular phenotypes have expanded the volume and diversity of single-cell omics data, providing an unprecedented resource for studying cell properties. Despite the availability of rich datasets and their continued growth, current single-cell models are unable to fully capitalize on the information they contain. Transformers have become the architecture of choice for foundation models in other domains owing to their ability to generalize to heterogeneous, large-scale datasets. Thus, the question arises of whether transformers could set off a similar shift in the field of single-cell modeling. Here we first describe the transformer architecture and its single-cell adaptations and then present a comprehensive review of the existing applications of transformers in single-cell analysis and critically discuss their future potential for single-cell biology. By studying limitations and technical challenges, we aim to provide a structured outlook for future research directions at the intersection of machine learning and single-cell biology. This Perspective presents a comprehensive and in-depth overview of computational models based on the deep learning architecture of transformers for single-cell omics analysis.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02353-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02353-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Transformers in single-cell omics: a review and new perspectives
Recent efforts to construct reference maps of cellular phenotypes have expanded the volume and diversity of single-cell omics data, providing an unprecedented resource for studying cell properties. Despite the availability of rich datasets and their continued growth, current single-cell models are unable to fully capitalize on the information they contain. Transformers have become the architecture of choice for foundation models in other domains owing to their ability to generalize to heterogeneous, large-scale datasets. Thus, the question arises of whether transformers could set off a similar shift in the field of single-cell modeling. Here we first describe the transformer architecture and its single-cell adaptations and then present a comprehensive review of the existing applications of transformers in single-cell analysis and critically discuss their future potential for single-cell biology. By studying limitations and technical challenges, we aim to provide a structured outlook for future research directions at the intersection of machine learning and single-cell biology. This Perspective presents a comprehensive and in-depth overview of computational models based on the deep learning architecture of transformers for single-cell omics analysis.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.