利用基于峰度和短时离散傅立叶变换的微调变异模式分解技术识别真核生物中的外显子区域。

IF 1.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleosides, Nucleotides & Nucleic Acids Pub Date : 2024-08-10 DOI:10.1080/15257770.2024.2388785
K Jayasree, Malaya Kumar Hota, Atul Kumar Dwivedi, Himanshuram Ranjan, Vinay Kumar Srivastava
{"title":"利用基于峰度和短时离散傅立叶变换的微调变异模式分解技术识别真核生物中的外显子区域。","authors":"K Jayasree, Malaya Kumar Hota, Atul Kumar Dwivedi, Himanshuram Ranjan, Vinay Kumar Srivastava","doi":"10.1080/15257770.2024.2388785","DOIUrl":null,"url":null,"abstract":"<p><p>In genomic research, identifying the exon regions in eukaryotes is the most cumbersome task. This article introduces a new promising model-independent method based on short-time discrete Fourier transform (ST-DFT) and fine-tuned variational mode decomposition (FTVMD) for identifying exon regions. The proposed method uses the <i>N</i>/3 periodicity property of the eukaryotic genes to detect the exon regions using the ST-DFT. However, background noise is present in the spectrum of ST-DFT since the sliding rectangular window produces spectral leakage. To overcome this, FTVMD is proposed in this work. VMD is more resilient to noise and sampling errors than other decomposition techniques because it utilizes the generalization of the Wiener filter into several adaptive bands. The performance of VMD is affected due to the improper selection of the penalty factor (<i>α</i>), and the number of modes (<i>K</i>). Therefore, in fine-tuned VMD, the parameters of VMD (<i>K</i> and <i>α</i>) are optimized by maximum kurtosis value. The main objective of this article is to enhance the accuracy in the identification of exon regions in a DNA sequence. At last, a comparative study demonstrates that the proposed technique is superior to its counterparts.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of exon regions in eukaryotes using fine-tuned variational mode decomposition based on kurtosis and short-time discrete Fourier transform.\",\"authors\":\"K Jayasree, Malaya Kumar Hota, Atul Kumar Dwivedi, Himanshuram Ranjan, Vinay Kumar Srivastava\",\"doi\":\"10.1080/15257770.2024.2388785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In genomic research, identifying the exon regions in eukaryotes is the most cumbersome task. This article introduces a new promising model-independent method based on short-time discrete Fourier transform (ST-DFT) and fine-tuned variational mode decomposition (FTVMD) for identifying exon regions. The proposed method uses the <i>N</i>/3 periodicity property of the eukaryotic genes to detect the exon regions using the ST-DFT. However, background noise is present in the spectrum of ST-DFT since the sliding rectangular window produces spectral leakage. To overcome this, FTVMD is proposed in this work. VMD is more resilient to noise and sampling errors than other decomposition techniques because it utilizes the generalization of the Wiener filter into several adaptive bands. The performance of VMD is affected due to the improper selection of the penalty factor (<i>α</i>), and the number of modes (<i>K</i>). Therefore, in fine-tuned VMD, the parameters of VMD (<i>K</i> and <i>α</i>) are optimized by maximum kurtosis value. The main objective of this article is to enhance the accuracy in the identification of exon regions in a DNA sequence. At last, a comparative study demonstrates that the proposed technique is superior to its counterparts.</p>\",\"PeriodicalId\":19343,\"journal\":{\"name\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15257770.2024.2388785\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2388785","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在基因组研究中,鉴定真核生物的外显子区域是最繁琐的工作。本文介绍了一种基于短时离散傅立叶变换(ST-DFT)和微调变异模式分解(FTVMD)的独立于模型的新方法,用于识别外显子区域。所提出的方法利用真核基因的 N/3 周期特性,使用 ST-DFT 检测外显子区域。然而,由于滑动矩形窗会产生频谱泄漏,ST-DFT 的频谱中会出现背景噪声。为了克服这一问题,本研究提出了 FTVMD。与其他分解技术相比,VMD 更能抵御噪声和采样误差,因为它利用了将维纳滤波泛化为多个自适应带的技术。由于惩罚因子(α)和模式数(K)选择不当,VMD 的性能会受到影响。因此,在微调 VMD 中,VMD 的参数(K 和 α)通过最大峰度值进行优化。本文的主要目的是提高 DNA 序列中外显子区域识别的准确性。最后,一项比较研究表明,所提出的技术优于同类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of exon regions in eukaryotes using fine-tuned variational mode decomposition based on kurtosis and short-time discrete Fourier transform.

In genomic research, identifying the exon regions in eukaryotes is the most cumbersome task. This article introduces a new promising model-independent method based on short-time discrete Fourier transform (ST-DFT) and fine-tuned variational mode decomposition (FTVMD) for identifying exon regions. The proposed method uses the N/3 periodicity property of the eukaryotic genes to detect the exon regions using the ST-DFT. However, background noise is present in the spectrum of ST-DFT since the sliding rectangular window produces spectral leakage. To overcome this, FTVMD is proposed in this work. VMD is more resilient to noise and sampling errors than other decomposition techniques because it utilizes the generalization of the Wiener filter into several adaptive bands. The performance of VMD is affected due to the improper selection of the penalty factor (α), and the number of modes (K). Therefore, in fine-tuned VMD, the parameters of VMD (K and α) are optimized by maximum kurtosis value. The main objective of this article is to enhance the accuracy in the identification of exon regions in a DNA sequence. At last, a comparative study demonstrates that the proposed technique is superior to its counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
期刊最新文献
In memory of an exquisite medicinal chemist, Prof. Morris Robins. Correction. The effect of VEGF and KDR gene variants on Crimean-Congo hemorrhagic fever. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in Turkish postmenopausal women with osteoporosis. Association between genetic variants (rs2839698, and rs217727) in lncRNA H19 and Acute lymphoblastic leukemia susceptibility: a case-control study in the Iranian population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1