单细胞中等位基因特异性表达的计算方法。

IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Trends in Genetics Pub Date : 2024-11-01 Epub Date: 2024-08-10 DOI:10.1016/j.tig.2024.07.003
Guanghao Qi, Alexis Battle
{"title":"单细胞中等位基因特异性表达的计算方法。","authors":"Guanghao Qi, Alexis Battle","doi":"10.1016/j.tig.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"939-949"},"PeriodicalIF":13.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational methods for allele-specific expression in single cells.\",\"authors\":\"Guanghao Qi, Alexis Battle\",\"doi\":\"10.1016/j.tig.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"939-949\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.07.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.07.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

等位基因特异性表达(ASE)是一种强大的信号,可用于研究多种分子机制,如顺式调控效应和印记。单细胞 RNA 测序(scRNA-seq)可以在单个细胞的分辨率上描述 ASE 的特征。在本综述中,我们将重点介绍处理和分析单细胞 ASE 数据的计算方法。我们首先介绍了一种生物信息学管道,它能从以前文献合成的原始读数中获得 ASE 计数。然后,我们讨论了利用 scRNA-seq 数据检测等位基因不平衡及其在不同条件下的变异性的统计方法。此外,我们还介绍了利用单细胞 ASE 解决特定生物学问题的其他方法。最后,我们讨论了未来的发展方向,并强调了集成优化生物信息学管道的必要性,以及进一步开发适用于不同技术的统计方法的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational methods for allele-specific expression in single cells.

Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
期刊最新文献
Role of ATP-dependent chromatin remodelers in meiosis. The good, the bad, and Neanderthalic immunity. Can developmental signals shatter or mend our genomes? Yes, polygenic sex determination is a thing! Computational methods for allele-specific expression in single cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1