颗粒物质诱发的氧化应激--体外研究中报告的机理认识和抗氧化方法。

IF 4.2 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental toxicology and pharmacology Pub Date : 2024-08-09 DOI:10.1016/j.etap.2024.104529
Vânia Vilas-Boas, Nivedita Chatterjee, Andreia Carvalho, Ernesto Alfaro-Moreno
{"title":"颗粒物质诱发的氧化应激--体外研究中报告的机理认识和抗氧化方法。","authors":"Vânia Vilas-Boas,&nbsp;Nivedita Chatterjee,&nbsp;Andreia Carvalho,&nbsp;Ernesto Alfaro-Moreno","doi":"10.1016/j.etap.2024.104529","DOIUrl":null,"url":null,"abstract":"<div><p>Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo.</p><p>This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS’s harmful effects are described, providing future perspectives on the topic.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"110 ","pages":"Article 104529"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1382668924001698/pdfft?md5=d409f8a487550348f815ae693982813d&pid=1-s2.0-S1382668924001698-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Particulate matter-induced oxidative stress – Mechanistic insights and antioxidant approaches reported in in vitro studies\",\"authors\":\"Vânia Vilas-Boas,&nbsp;Nivedita Chatterjee,&nbsp;Andreia Carvalho,&nbsp;Ernesto Alfaro-Moreno\",\"doi\":\"10.1016/j.etap.2024.104529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo.</p><p>This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS’s harmful effects are described, providing future perspectives on the topic.</p></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":\"110 \",\"pages\":\"Article 104529\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001698/pdfft?md5=d409f8a487550348f815ae693982813d&pid=1-s2.0-S1382668924001698-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001698\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001698","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全世界每年有数百万人因空气污染而死亡,吸入的颗粒物(PM)是其中的一个关键因素。可吸入颗粒物的氧化潜能表明它能够促进氧化环境。过量的活性氧(ROS)可通过氧化应激造成细胞损伤,导致炎症、内质网应激、气道重塑和各种细胞死亡模式(凋亡、铁跃变、热跃变)。ROS 还能与大分子相互作用,诱发 DNA 损伤和表观遗传修饰,从而破坏体内平衡。这些影响已在体外得到广泛研究,并在体内得到证实。本综述探讨了空气传播颗粒的氧化潜能和体外观察到的 PM 诱导的 ROS 介导的细胞损伤,强调了最新文献中描述的氧化应激、炎症和细胞死亡模式之间的联系。综述还分析了 ROS 对 DNA 损伤、修复、致癌性和表观遗传学的影响。此外,还介绍了抗氧化剂在防止 ROS 有害影响方面的最新进展,为这一主题提供了未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particulate matter-induced oxidative stress – Mechanistic insights and antioxidant approaches reported in in vitro studies

Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo.

This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS’s harmful effects are described, providing future perspectives on the topic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
4.70%
发文量
185
审稿时长
34 days
期刊介绍: Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man. Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals. In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.
期刊最新文献
Microplastics can alter structural configurations of human non-canonical G-quadruplex DNA The impact of APOE4 on neurological symptoms after exposure to K. brevis neurotoxin Exposure to PCB52 (2,2′,5,5′-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose Compound-dependent fetal toxicity after in utero exposure to chemotherapy in a pregnant mouse model Causal, predictive or observational? Different understandings of key event relationships for adverse outcome pathways and their implications on practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1