{"title":"利用可混合非连续伽勒金方法研究传导比对圆柱体周围稳定流共轭传热的影响","authors":"","doi":"10.1016/j.finel.2024.104223","DOIUrl":null,"url":null,"abstract":"<div><p>Conjugate heat transfer (CHT) problem of flow around a fixed cylinder is examined by using a high-order method which is based on the hybridizable discontinuous Galerkin (HDG) method. The present numerical method based on HDG discretization produces a system of equations in which the energy equation of fluid is coupled with that of solid while the continuity of heat-flux at the fluid-solid interface is automatically satisfied. We Investigate the effect of the conductivity ratio on the temperature distribution inside the cylinder and more importantly, the constraint of heat-flux continuity at the fluid-solid interface. The present high-order solutions are compared with low-order solutions by finite volume method of ANSYS, especially in terms of the constraint of heat-flux continuity at the interface. We show that the present high-order method provides accurate solutions and satisfies the constraint of heat-flux continuity better than ANSYS even with the use of a coarse grid. Furthermore, we have derived a numerical correlation between the Nusselt and the Reynolds number by using the fact that the surface temperature of the cylinder is nearly constant when conductivity ratio is larger than order of hundred. The proposed numerical correlation was found to be close to that from the exiting experiment.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the effect of conductivity ratio on a conjugate heat transfer for a steady flow around a cylinder by using the hybridizable discontinuous Galerkin method\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conjugate heat transfer (CHT) problem of flow around a fixed cylinder is examined by using a high-order method which is based on the hybridizable discontinuous Galerkin (HDG) method. The present numerical method based on HDG discretization produces a system of equations in which the energy equation of fluid is coupled with that of solid while the continuity of heat-flux at the fluid-solid interface is automatically satisfied. We Investigate the effect of the conductivity ratio on the temperature distribution inside the cylinder and more importantly, the constraint of heat-flux continuity at the fluid-solid interface. The present high-order solutions are compared with low-order solutions by finite volume method of ANSYS, especially in terms of the constraint of heat-flux continuity at the interface. We show that the present high-order method provides accurate solutions and satisfies the constraint of heat-flux continuity better than ANSYS even with the use of a coarse grid. Furthermore, we have derived a numerical correlation between the Nusselt and the Reynolds number by using the fact that the surface temperature of the cylinder is nearly constant when conductivity ratio is larger than order of hundred. The proposed numerical correlation was found to be close to that from the exiting experiment.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001173\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Investigation on the effect of conductivity ratio on a conjugate heat transfer for a steady flow around a cylinder by using the hybridizable discontinuous Galerkin method
Conjugate heat transfer (CHT) problem of flow around a fixed cylinder is examined by using a high-order method which is based on the hybridizable discontinuous Galerkin (HDG) method. The present numerical method based on HDG discretization produces a system of equations in which the energy equation of fluid is coupled with that of solid while the continuity of heat-flux at the fluid-solid interface is automatically satisfied. We Investigate the effect of the conductivity ratio on the temperature distribution inside the cylinder and more importantly, the constraint of heat-flux continuity at the fluid-solid interface. The present high-order solutions are compared with low-order solutions by finite volume method of ANSYS, especially in terms of the constraint of heat-flux continuity at the interface. We show that the present high-order method provides accurate solutions and satisfies the constraint of heat-flux continuity better than ANSYS even with the use of a coarse grid. Furthermore, we have derived a numerical correlation between the Nusselt and the Reynolds number by using the fact that the surface temperature of the cylinder is nearly constant when conductivity ratio is larger than order of hundred. The proposed numerical correlation was found to be close to that from the exiting experiment.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.