Leila Rezaee , Naser Davatgar , Ali Akbar Moosavi , Ali Reza Sepaskhah
{"title":"评估土壤收缩和孔隙度动态对膨胀性粘土中水稻作物产量的影响","authors":"Leila Rezaee , Naser Davatgar , Ali Akbar Moosavi , Ali Reza Sepaskhah","doi":"10.1016/j.still.2024.106261","DOIUrl":null,"url":null,"abstract":"<div><p>Soil shrinkage during the drying process (water stress) is one of the main issues in expansive soils of paddy fields. It occurs due to decrease in soil water content, resulting in changes in soil volume and the geometry of pores, leading to the formation of cracks and higher water loss. The aim of this study was to assess the shrinkage characteristic curve and pore size of paddy soils to determine the shrinkage -swelling behavior in Guilan province, Iran. 120 soil samples were collected from the study area. Pore size was determined using soil moisture retention curve (SMRC). It was established by plotting the soil water content (θ) versus the corresponding matric suction (h), and the shrinkage curve by plotting the void ratio (e) against the moisture ratio (υ). The suction-pore relationships were also determined. Furthermore, the geometric factors indicating the change in vertical (subsidence) and horizontal (crack) volume of the soils were determined and varied from 1.23 to 2.53, indicating that the vertical change in soil volume is predominant. The zero, residual and proportional shrinkage phases accounted for less than 2 %, 8–38 %, and 61–91 % of the total soil volume change, respectively. The shrinkage capacity of the soils ranged from 0.52 to 1.37. Cation exchange capacity and clay content were identified as the most important factors affecting soil shrinkage properties. In general, the studied paddy soils have great potential for swelling- shrinkage and cracking during the drying process due to the large percentage of expandable clays and the medium to fine pores. The resultant cracks negatively affect crop yield by damaging plant roots and increasing water losses through the soil profiles.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"244 ","pages":"Article 106261"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of soil shrinkage and pore size dynamics on rice crop yield in expansive clay soils\",\"authors\":\"Leila Rezaee , Naser Davatgar , Ali Akbar Moosavi , Ali Reza Sepaskhah\",\"doi\":\"10.1016/j.still.2024.106261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil shrinkage during the drying process (water stress) is one of the main issues in expansive soils of paddy fields. It occurs due to decrease in soil water content, resulting in changes in soil volume and the geometry of pores, leading to the formation of cracks and higher water loss. The aim of this study was to assess the shrinkage characteristic curve and pore size of paddy soils to determine the shrinkage -swelling behavior in Guilan province, Iran. 120 soil samples were collected from the study area. Pore size was determined using soil moisture retention curve (SMRC). It was established by plotting the soil water content (θ) versus the corresponding matric suction (h), and the shrinkage curve by plotting the void ratio (e) against the moisture ratio (υ). The suction-pore relationships were also determined. Furthermore, the geometric factors indicating the change in vertical (subsidence) and horizontal (crack) volume of the soils were determined and varied from 1.23 to 2.53, indicating that the vertical change in soil volume is predominant. The zero, residual and proportional shrinkage phases accounted for less than 2 %, 8–38 %, and 61–91 % of the total soil volume change, respectively. The shrinkage capacity of the soils ranged from 0.52 to 1.37. Cation exchange capacity and clay content were identified as the most important factors affecting soil shrinkage properties. In general, the studied paddy soils have great potential for swelling- shrinkage and cracking during the drying process due to the large percentage of expandable clays and the medium to fine pores. The resultant cracks negatively affect crop yield by damaging plant roots and increasing water losses through the soil profiles.</p></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"244 \",\"pages\":\"Article 106261\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724002629\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002629","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Assessing the impact of soil shrinkage and pore size dynamics on rice crop yield in expansive clay soils
Soil shrinkage during the drying process (water stress) is one of the main issues in expansive soils of paddy fields. It occurs due to decrease in soil water content, resulting in changes in soil volume and the geometry of pores, leading to the formation of cracks and higher water loss. The aim of this study was to assess the shrinkage characteristic curve and pore size of paddy soils to determine the shrinkage -swelling behavior in Guilan province, Iran. 120 soil samples were collected from the study area. Pore size was determined using soil moisture retention curve (SMRC). It was established by plotting the soil water content (θ) versus the corresponding matric suction (h), and the shrinkage curve by plotting the void ratio (e) against the moisture ratio (υ). The suction-pore relationships were also determined. Furthermore, the geometric factors indicating the change in vertical (subsidence) and horizontal (crack) volume of the soils were determined and varied from 1.23 to 2.53, indicating that the vertical change in soil volume is predominant. The zero, residual and proportional shrinkage phases accounted for less than 2 %, 8–38 %, and 61–91 % of the total soil volume change, respectively. The shrinkage capacity of the soils ranged from 0.52 to 1.37. Cation exchange capacity and clay content were identified as the most important factors affecting soil shrinkage properties. In general, the studied paddy soils have great potential for swelling- shrinkage and cracking during the drying process due to the large percentage of expandable clays and the medium to fine pores. The resultant cracks negatively affect crop yield by damaging plant roots and increasing water losses through the soil profiles.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.